42,213 research outputs found

    Exclusive electroproduction revisited: treating kinematical effects

    Full text link
    Generalized parton distributions of the nucleon are accessed via exclusive leptoproduction of the real photon. While earlier analytical considerations of phenomenological observables were restricted to twist-three accuracy, i.e., taking into account only terms suppressed by a single power of the hard scale, in the present study we revisit this differential cross section within the helicity formalism and restore power-suppressed effects stemming from the process kinematics exactly. We restrict ourselves to the phenomenologically important case of lepton scattering off a longitudinally polarized nucleon, where the photon flips its helicity at most by one unit.Comment: 22 pages, 1 figur

    Contact tracing and epidemics control in social networks

    Full text link
    A generalization of the standard susceptible-infectious-removed (SIR) stochastic model for epidemics in sparse random networks is introduced which incorporates contact tracing in addition to random screening. We propose a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also analyze the role of contact tracing in epidemics control in small-world networks and show that its effectiveness grows as the rewiring probability is reduced.Comment: 4 pages, 4 figures, submitted to PR

    NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Get PDF
    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2_2Cu3_3O7_7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T <μ0H<< \mu_0 H < 1 T) and temperature (0.3 K <T<< T< 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1 - 30) ×106μB\times 10^6\,\mu_{\rm B}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Exclusive electroproduction of lepton pairs as a probe of nucleon structure

    Get PDF
    We suggest the measurement of exclusive electroproduction of lepton pairs as a tool to study inter-parton correlations in the nucleon via generalized parton distributions in the kinematical region where this process is light-cone dominated. We demonstrate how the single beam-spin asymmetry allows to perform such kind of analysis and give a number of predictions for several experimental setups. We comment on other observables which allow for a clean separation of different species of generalized parton distributions.Comment: 4 pages RevTeX4, 6 figures, typo fixe

    The Alzheimer variant of Lewy body disease: A pathologically confirmed case-control study

    Get PDF
    The objective of the study was to identify clinical features that distinguish patients with dementia with Lewy bodies (DLB), who were classified as Alzheimer's disease ( AD) patients, from patients with AD. We examined a group of 27 patients from our memory clinic, originally diagnosed with AD, of whom 6 were postmortem found to have DLB. For the present study, we compared cognitive, noncognitive and neurological symptoms between the two groups. We found that there were no differences on ratings of dementia and scales for activities of daily living. Patients with DLB performed better on the MMSE and the memory subtest of the CAMCOG, but there was no difference in any other cognitive domain. Furthermore, genetic risk factors, including family history of dementia or allele frequency of the apolipoprotein epsilon 4, did not discriminate between the two groups, and there were no differences on CCT scans. Taken together, our findings suggest that Lewy body pathology may be present in patients who do not show the typical clinical features which distinguish DLB from AD. Copyright (C) 2005 S. Karger AG, Basel

    Voltage-flux-characteristics of asymmetric dc SQUIDs

    Full text link
    We present a detailed analysis of voltage-flux V(Phi)-characteristics for asymmetric dc SQUIDs with various kinds of asymmetries. For finite asymmetry alpha_I in the critical currents of the two Josephson junctions, the minima in the V(Phi)-characteristics for bias currents of opposite polarity are shifted along the flux axis by Delta_Phi = (alpha_I)*(beta_L) relative to each other; beta_L is the screening parameter. This simple relation allows the determination of alpha_I in our experiments on YBa_2Cu_3O_(7-x} dc SQUIDs and comparison with theory. Extensive numerical simulations within a wide range of beta_L and noise parameter Gamma reveal a systematic dependence of the transfer function V_Phi on alpha_I and alpha_R (junction resistance asymmetry). As for the symmetric dc SQUID, V_Phi factorizes into g(Gamma*beta_L)*f(alpha_I,beta_L), where now f also depends on alpha_I. For \beta_L below five we find mostly a decrease of V_Phi with increasing alpha_I, which however can only partially account for the frequently observed discrepancy in V_Phi between theory and experiment for high-T_c dc SQUIDs.Comment: 4 pages, 7 figures, Applied Superconductivity Conference 2000, to be published in IEEE Trans. Appl. Supercon
    corecore