4,379 research outputs found

    Kinematics of the South Atlantic rift

    Full text link
    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times (\approx126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial \approx17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the equatorial Atlantic domain, resulting in both progressively increasing extensional velocities as well as a significant rotation of the extension direction to NE-SW. Final breakup between South America and Africa occurred in the conjugate Santos--Benguela margin segment at around 113 Ma and in the Equatorial Atlantic domain between the Ghanaian Ridge and the Piau\'i-Cear\'a margin at 103 Ma. We conclude that such a multi-velocity, multi-directional rift history exerts primary control on the evolution of this conjugate passive margins systems and can explain the first order tectonic structures along the South Atlantic and possibly other passive margins.Comment: 46 Pages, 22 figures. Submitted to Solid Earth (http://www.solid-earth.net). Abstract shortened due to arXiv restrictions. New version contains revisions and amendments as per reviewers requests. Supplementary data is available at http://datahub.io/en/dataset/southatlanticrif

    Quantum Cloning of Binary Coherent States - Optimal Transformations and Practical Limits

    Get PDF
    The notions of qubits and coherent states correspond to different physical systems and are described by specific formalisms. Qubits are associated with a two-dimensional Hilbert space and can be illustrated on the Bloch sphere. In contrast, the underlying Hilbert space of coherent states is infinite-dimensional and the states are typically represented in phase space. For the particular case of binary coherent state alphabets these otherwise distinct formalisms can equally be applied. We capitalize this formal connection to analyse the properties of optimally cloned binary coherent states. Several practical and near-optimal cloning schemes are discussed and the associated fidelities are compared to the performance of the optimal cloner.Comment: 12 pages, 12 figure
    corecore