1,121 research outputs found

    Charge transport mechanism in networks of armchair graphene nanoribbons

    Get PDF
    In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature that enables novel graphene-based electronics. Despite great progress, reliable and reproducible fabrication of single-ribbon field-effect transistors (FETs) is still a challenge, impeding the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on networks of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with large conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs to electrodes. Modeling the charge transport in the networks reveals that transport is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical GNR length. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism is a key step forward for functionalization of GNRs

    Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics

    Get PDF

    Generation of nitrile groups on graphites in a nitrogen RF-plasma discharge

    Get PDF
    AbstractGraphite particles were treated in a nitrogen radio frequency-plasma (RF-plasma) at different excitation power. The morphological as well as chemical surface modifications were investigated by Raman spectroscopy, SEM, and XPS. Changes of the sp2/sp3 bonding ratio and selective surface terminations by functional groups were achieved. Especially, a direct functionalization of the graphites with nitrile groups was evidenced by a characteristic signal at 2240cm−1 in the Raman spectra after a high energy RF-nitrogen plasma treatment. A total nitrogen content of up to 11at.% was reached by the applied conditions. The increased polarity of the surfaces was confirmed by contact angle measurements. The nitrile functionalization may serve as synthetic scaffold for the development of new routes towards the chemical surface modification of carbon substrates. Furthermore, the modified graphites can be processed by common exfoliation techniques yielding nitrogen modified graphene nanoplatelets directly in polar and non-polar solvents

    A new charge-transfer complex in UHV co-deposited tetramethoxypyrene and tetracyanoquinodimethane

    Full text link
    UHV-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP1-TCNQ1) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), X-ray-diffraction (XRD), infrared (IR) spectroscopy and scanning tunnelling spectroscopy (STS). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d1= 0.894 nm, d2= 0.677 nm). A softening of the CN stretching vibration (red-shift by 7 cm-1) of TCNQ is visible in the IR spectra, being indicative of a CT of the order of 0.3e from TMP to TCNQ in the complex. Characteristic shifts of the electronic level positions occur in UPS and STS that are in reasonable agreement with the prediction of from DFT calculations (Gaussian03 with hybrid functional B3LYP). STS reveals a HOMO-LUMO gap of the CT complex of about 1.25 eV being much smaller than the gaps (>3.0 eV) of the pure moieties. The electron-injection and hole-injection barriers are 0.3 eV and 0.5 eV, respectively. Systematic differences in the positions of the HOMOs determined by UPS and STS are discussed in terms of the different information content of the two methods.Comment: 20 pages, 6 figure

    Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution

    No full text
    The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an,. I optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ads). Patchy dendrimers bound to the surface of Ads formed a synthetic polymer corona that greatly altered various host interactions of Ads as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ads to blood coagulation factor X, one of the most critical virus host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ads with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications
    corecore