43 research outputs found

    Re-thinking Housing and Mobility – A European Living Lab for Sustainable Mobility in Munich

    Get PDF
    This paper aims to describe the vision and implementation approach of a sustainable and innovative mobility and housing concept of a city district at the pericentral edge of Munich. Within the European CIVITAS initiative, the ECCENTRIC project demonstrates an innovative approach to mobilize residents by offering intermodal mobility and mobility on demand. With around 8000 new inhabitants and 12,000 new employees within the next years, the transport system in the Munich living lab Domagkpark and Parkstadt Schwabing needs an integrative and innovative approach to ensure a functioning, ecologically compatible and socially acceptable mobility supply. Central objective is to increase quality of life in the district through a substantial roll-out of innovative mobility solutions, that reduce the use (and number) of private cars.With the implementation of various project measures in the field of sustainable and shared mobility, mobility management, city logistics and road security, a new model quarter for sustainable urban development and compatible mobility will be development. Successful research findings aim to be implemented in future newly-built quarters of Munich and replicated in other European cities

    An OTTER for Responsive Maritime Domain Awareness

    Get PDF
    The presentation "An OTTER for Responsive Maritime Domain Awareness" held at the European Workshop on Maritime Systems Resilience and Security (MARESEC 2023) is a follow up to previously published full-paper "Establishing Responsive Space: A maritime situational awareness experiment" and shows the progress of the small satellite mission OTTER from DLR-RSC³ over the last 8 months of the project. The satellite will detect cooperative vessels via capturing their AIS signals from orbit and verify their position via optical camera. It is presented, that the integration and development of the satellite has been done in a responsive manner, but that challenges in the rocket launch opportunity have occured, that led to a delay of 1 year until the satellite can be launched into orbit. The presentation shows how this delay can effectively be used to the advantage of Responsive Space research, before launch and data acquisition can happen

    Assessment of human immediate response capability related to tsunami threats in Indonesia at a sub-national scale

    Get PDF
    Human immediate response is contextualized into different time compartments reflecting the tsunami early warning chain. Based on the different time compartments the available response time and evacuation time is quantified. The latter incorporates accessibility of safe areas determined by a hazard assessment, as well as environmental and demographic impacts on evacuation speed properties assessed using a Cost Distance Weighting GIS approach. Approximately 4.35 million Indonesians live in tsunami endangered areas on the southern coasts of Sumatra, Java and Bali and have between 20 and 150 min to reach a tsunami-safe area. Most endangered areas feature longer estimated-evacuation times and hence the population possesses a weak immediate response capability leaving them more vulnerable to being directly impacted by a tsunami. At a sub-national scale these hotspots were identified and include: the Mentawai islands off the Sumatra coast, various sub-districts on Sumatra and west and east Java. Based on the presented approach a temporal dynamic estimation of casualties and displacements as a function of available response time is obtained for the entire coastal area. As an example, a worst case tsunami scenario for Kuta (Bali) results in casualties of 25 000 with an optimal response time (direct evacuation when receiving a tsunami warning) and 120 000 for minimal response time (no evacuation). The estimated casualties correspond well to observed/reported values and overall model uncertainty is low with a standard error of 5%. The results obtained allow for prioritization of intervention measures such as early warning chain, evacuation and contingency planning, awareness and preparedness strategies down to a sub-district level and can be used in tsunami early warning decision support

    Establishing Responsive Space: A maritime situational awareness experiment

    Get PDF
    Dependence on space-based infrastructure for navigation and communication on seas, as well as on land is at an all-time high. The failure of a satellite that provides these capabilities can have catastrophic consequences for civil and military end users. Thus, the need to protect this critical infrastructure has risen in priority. Here Responsive Space Capabilities come into play, which aim to recover and extend existing capabilities or integrate payloads onto satellites, launch them into orbit and operate them as fast as possible. These capabilities increase resilience and deterrence in a defensive way, but are still far from being reality, considering that the development chain until a satellite can actively be used in space usually takes several years instead of a few weeks or even days. As a first step towards this ability, the Responsive Space Cluster Competence Center (RSC³) of the German Aerospace Center (DLR) aims to establish a technology base for research and development in this area, starting off by capturing todays baseline of industrial capabilities with a Maritime Situational Awareness Experiment (MSAE). This experiment includes planning, integrating, testing, launching and operating a small satellite together with industry partners. During these phases, current capability gaps are identified and research areas to speed up space processes are derived for the launch-, ground and space segment. As payloads for this small satellite mission a camera and an AIS (Automatic Identification System) receiver are planned, which serve the demand to detect AIS signals of cooperative maritime targets and optically confirm their position

    Thermal relaxation for particle systems in interaction with several bosonic heat reservoirs

    No full text
    The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.Diese Arbeit beschäftigt sich mit dem Studium quanten-physikalischer Systeme, die aus einem Teilchensystem (etwa einer Spinkette) and mehreren quantisierten masselosen Bosonenfeldern (wie Photonengase oder Phononenfelder) bei positiver Temperatur bestehen. Ein solcher Aufbau dient als Modell zur Beschreibung von Materie in Wechselwirkung mit thermischer „Strahlung“ aus verschiedenen Wärmequellen. Dabei stehen Fragen nach den dynamischen und thermodynamischen Eigenschaften einer solchen Teilchen–Boson Konfiguration weit außerhalb der thermischen Gleichgewichtssituation im Blickpunkt. Wir studieren ein spezielles Szenario, bei dem das Teilchensystem in Kontakt mit den Bosonsystemen (gelegentlich auch als Wärmebäder oder -reservoire bezeichnet) gebracht wird. Die Wärmebader werden jeweils in einem Zustand präpariert, der einem thermischen Gleichgewicht nahe ist – jedes Reservoir bei einer anderen Temperatur. Für eine solche Anfangskonfiguration analysieren wir die Zeitentwicklung, wie sie sich unter Wechselwirkung der Komponenten ergibt, und weisen für das System thermische Relaxation in einen stationären Zustand nach. In anderen Worten: wir beweisen die Existenz eines zeitlich invarianten Zustandes, welcher der eindeutige Grenzzustand ist, gegen den der Anfangszustand unter der Zeitentwicklung konvergiert. Solange die Reservoire bei verschiedenen Temperaturen angesetzt wurden, wird dieser stationäre Zustand thermodynamische Charakteristika wie stationäre Wärmeflüsse sowie eine positive Entropieproduktionsrate aufweisen. Dies sind wesentliche Unterscheidungsmerkmale gegenüber einem thermischen Gleichgewichtszustand bei beliebiger Temperatur. Wir bezeichnen einen solchen Zustand als NESS (non-equilibrium stationary state). Der oben skizzierte physikalische Aufbau wird mathematisch in der Sprache der C*-Algebren formuliert. Die Dissertation bietet einen ausführlichen Überblick über die Anwendung von Operator-algebraischen Theorien auf die statistische Quantenmechanik und führt detailliert die mathematischen Objekte zur Beschreibung von Materie in Wechselwirkung mit Strahlung ein. Die C*-Theorie wird dabei auf das konkrete Modell angepasst. Die algebraische Beschreibung des Systems wird in eine Hilbertraum-Darstellung übertragen. Der geeignete Hilbertraum ist durch einen bosonischen Fockraum über einem passenden L2-Raum gegeben. Der erste Teil der vorliegenden Arbeit schließt mit der Herleitung einer Spektraltheorie ab. Diese bringt die (thermo-) dynamischen Merkmale mit spektralen Eigenschaften eines geeigneten Generators, bezeichnet mit K, der Zeitentwicklung in der Hilbertraum-Darstellung in Zusammenhang. Dadurch wird die Frage nach thermischer Relaxation umformuliert in ein spektrales Problem. Der Operator K ist vom Typ Pauli-Fierz. Es schließt die Spektralanalyse des Generators K an. Diese Aufgabe ist das Herzstück der Arbeit und bringt verschiedene Techniken aus der Funktionalanalysis zur Anwendung. Der Operator K resultiert aus einer Störung eines Operators L0, der das nicht-wechselwirkende Teilchen – Boson System beschreibt. Alle spektralen Betrachtungen werden im störungstheoretischen Sinne durchgeführt, d.h. wir setzen voraus dass die Stärke der Kopplung hinreichend klein ist. Das Herauslesen von Merkmalen der Dynamik des Systems aus den Eigenschaften von K erfordert insbesondere die Kenntnis des Spektrums von K in der Nachbarschaft der Eigenwerte des ungestörten Operators L0. Da sich konvergente Neumannreihen-Entwicklungen zum Studium des gestörten Spektrums lediglich in einer Umgebung von der Ordnung der Kopplungsstärke um das ungestörte Spektrum eignen, bringen wir eine genauere Methode zur Anwendung, die so genannte Feshbach Abbildung. Diese Technik ermöglicht die Analyse des Spektrums auf kleineren Skalen durch Verlagerung der Untersuchung auf einen spektralen Unterraum. Da Notwendigkeit von spektraler Information auf beliebig kleinen Skalen erfordert die Iteration der Feshbach Abbildung. Dieses Verfahren führt zu einer Operator-theoretischen Renormierungsgruppe. Der Leser wird mit der Feshbach Technik vertraut gemacht und die hierauf aufbauende Renormierungsprozedur wird im Detail diskutiert. Des Weiteren wird die Extraktion der spektralen Information aus dem Renormierungsgruppenfluss erklärt. Diese Dissertation ergänzt einen aktuellen Forschungsbeitrag von Jakšić und Pillet zu einem ähnlichen physikalischen Modell in zweierlei Hinsicht. Erstens behandeln wir eine technisch wesentlich delikatere Situation durch die Betrachtung von bosonischen Wärmereservoiren anstelle fermionischer und, zweitens, können wird das Systems uniform für kleine Temperaturen studieren. Die Anpassung einer Feshbach-basierten Renormierungsgruppe entwickelt von Bach, Chen, Fröhlich und Sigal auf konkrete Spektralprobleme in der statistischen Quantenmechanik ist eine weitere Neuheit dieser Arbeit
    corecore