26 research outputs found

    All-fiber femtosecond Cherenkov source

    Get PDF
    An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable Cherenkov radiation at visible wavelengths 580 – 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in practical biophotonics such as bio-imaging and microscopy

    Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    Get PDF
    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength 600 nm, based on an Yb-fiber laser and a highly nonlinear photonic crystal fiber. A relative intensity noise as low as 103 dBc/Hz, corresponding to 2.48% pulse-to-pulse fluctuation in energy, is observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ-pulse energy. This pulse-to-pulse fluctuation is at least 10.6-dB lower compared to spectrally sliced supercontinuum sources traditionally used for ultrafast fiber-based generation at visible wavelengths. Low noise makes all-fiber Cherenkov sources promising for biophotonics applications such as multiphoton microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum

    Mid-infrared supercontinuum generation to 12.5ÎĽm in large NA chalcogenide step-index fibres pumped at 4.5ÎĽm

    Get PDF
    We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.7kW. A thorough fibre design optimisation was conducted using measured material dispersion (As-Se/Ge-As-Se) and measured fibre loss obtained in fabricated fibre of the same materials. The loss was below 2.5dB/m in the 3.3-9.4μm region. Fibres with 8 and 10μm core diameters generated an SC out to 12.5 and 10.7μm in less than 2m of fibre when pumped with 0.75 and 1kW, respectively. Larger core fibres with 20μm core diameters for potential higher power handling generated an SC out to 10.6μm for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted. © 2014 Optical Society of America
    corecore