46 research outputs found
Automatic Emphysema Detection using Weakly Labeled HRCT Lung Images
A method for automatically quantifying emphysema regions using
High-Resolution Computed Tomography (HRCT) scans of patients with chronic
obstructive pulmonary disease (COPD) that does not require manually annotated
scans for training is presented. HRCT scans of controls and of COPD patients
with diverse disease severity are acquired at two different centers. Textural
features from co-occurrence matrices and Gaussian filter banks are used to
characterize the lung parenchyma in the scans. Two robust versions of multiple
instance learning (MIL) classifiers, miSVM and MILES, are investigated. The
classifiers are trained with the weak labels extracted from the forced
expiratory volume in one minute (FEV) and diffusing capacity of the lungs
for carbon monoxide (DLCO). At test time, the classifiers output a patient
label indicating overall COPD diagnosis and local labels indicating the
presence of emphysema. The classifier performance is compared with manual
annotations by two radiologists, a classical density based method, and
pulmonary function tests (PFTs). The miSVM classifier performed better than
MILES on both patient and emphysema classification. The classifier has a
stronger correlation with PFT than the density based method, the percentage of
emphysema in the intersection of annotations from both radiologists, and the
percentage of emphysema annotated by one of the radiologists. The correlation
between the classifier and the PFT is only outperformed by the second
radiologist. The method is therefore promising for facilitating assessment of
emphysema and reducing inter-observer variability.Comment: Accepted at PLoS ON
Membrane-protein crystals for neutron diffraction
Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1. The challenges encountered at the various steps in the process from crystal nucleation and growth to crystal mounting are explored, and it is demonstrated that NMX-compatible membrane-protein crystals can indeed be obtained
Nonlinear relationship between ER Ca2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death
Endoplasmic reticulum (ER) Ca2+ depletion activates the unfolded protein response (UPR), inhibits bulk autophagy and eventually induces cell death in mammalian cells. However, the extent and duration of ER Ca2+ depletion required is unknown. We instigated a detailed study in two different cell lines, using sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors to gradually reduce ER Ca2+ levels in a controlled manner. Remarkably, UPR induction (as assessed by expression analyses of UPR-regulated proteins) and autophagy inhibition (as assessed by analyses of effects on starvation-induced bulk autophagy) required substantially higher drug concentrations than those needed to strongly decrease total ER Ca2+ levels. In fact, even when ER Ca2+ levels were so low that we could hardly detect any release of Ca2+ upon challenge with ER Ca2+ purging agents, UPR was not induced, and starvation-induced bulk autophagy was still fully supported. Moreover, although we observed reduced cell proliferation at this very low level of ER Ca2+, cells could tolerate prolonged periods (days) without succumbing to cell death. Addition of increasing concentrations of extracellular EGTA also gradually depleted the ER of Ca2+, and, as with the SERCA inhibitors, EGTA-induced activation of UPR and cell death required higher EGTA concentrations than those needed to strongly reduce ER Ca2+ levels. We conclude that ER Ca2+ depletion-induced effects on UPR, autophagy and cell death require either an extreme general depletion of ER Ca2+ levels, or Ca2+ depletion in areas of the ER that have a higher resistance to Ca2+ drainage than the bulk of the ER
Crystal Structure of the Vanadate-Inhibited -ATPase
Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca-ATPase with bound vanadate in the absence of Ca. Vanadate is bound at the catalytic site as a planar VOâ in complex with water and Mg in a dephosphorylation transition-state-like conformation. Validating bound VOâ by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Clâ site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2¡VOâ structure with that in E2¡BeFâ (E2P ground state analog) reveals multiple binding modes to the Ca-ATPase
Characterization of a <em>Listeria monocytogenes</em> Ca<sup>2+</sup> pump:a SERCA-Type ATPase with only one CA<sup>2+</sup>-binding site
We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) âź80 Îźm) and a high pH optimum (pH âź9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH