A method for automatically quantifying emphysema regions using
High-Resolution Computed Tomography (HRCT) scans of patients with chronic
obstructive pulmonary disease (COPD) that does not require manually annotated
scans for training is presented. HRCT scans of controls and of COPD patients
with diverse disease severity are acquired at two different centers. Textural
features from co-occurrence matrices and Gaussian filter banks are used to
characterize the lung parenchyma in the scans. Two robust versions of multiple
instance learning (MIL) classifiers, miSVM and MILES, are investigated. The
classifiers are trained with the weak labels extracted from the forced
expiratory volume in one minute (FEV1) and diffusing capacity of the lungs
for carbon monoxide (DLCO). At test time, the classifiers output a patient
label indicating overall COPD diagnosis and local labels indicating the
presence of emphysema. The classifier performance is compared with manual
annotations by two radiologists, a classical density based method, and
pulmonary function tests (PFTs). The miSVM classifier performed better than
MILES on both patient and emphysema classification. The classifier has a
stronger correlation with PFT than the density based method, the percentage of
emphysema in the intersection of annotations from both radiologists, and the
percentage of emphysema annotated by one of the radiologists. The correlation
between the classifier and the PFT is only outperformed by the second
radiologist. The method is therefore promising for facilitating assessment of
emphysema and reducing inter-observer variability.Comment: Accepted at PLoS ON