19 research outputs found

    Proposal for the delineation of neoadjuvant target volumes in oesophageal cancer

    Get PDF
    PURPOSE: To define instructions for delineation of target volumes in the neoadjuvant setting in oesophageal cancer. MATERIALS AND METHODS: Radiation oncologists of five European centres participated in the following consensus process: [1] revision of published (MEDLINE) and national/institutional delineation guidelines; [2] first delineation round of five cases (patient 1-5) according to national/institutional guidelines; [3] consensus meeting to discuss the results of step 1 and 2, followed by a target volume delineation proposal; [4] circulation of proposed instructions for target volume delineation and atlas for feedback; [5] second delineation round of five new cases (patient 6-10) to peer review and validate (two additional centres) the agreed delineation guidelines and atlas; [6] final consensus on the delineation guidelines depicted in an atlas. Target volumes of the delineation rounds were compared between centres by Dice similarity coefficient (DSC) and maximum/mean undirected Hausdorff distances (Hmax/Hmean). RESULTS: In the first delineation round, the consistency between centres was moderate (CTVtotal: DSC = 0.59-0.88; Hmean = 0.2-0.4 cm). Delineations in the second round were much more consistent. Lowest variability was obtained between centres participating in the consensus meeting (CTVtotal: DSC: p < 0.050 between rounds for patients 6/7/8/10; Hmean: p < 0.050 for patients 7/8/10), compared to validation centres (CTVtotal: DSC: p < 0.050 between validation and consensus meeting centres for patients 6/7/8; Hmean: p < 0.050 for patients 7/10). A proposal for delineation of target volumes and an atlas were generated. CONCLUSION: We proposed instructions for target volume delineation and an atlas for the neoadjuvant radiation treatment in oesophageal cancer. These will enable a more uniform delineation of patients in clinical practice and clinical trials

    Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures

    Full text link

    A Bayesian approach to fitting Gibbs processes with temporal random effects

    Get PDF
    This work is partially supported by Research Councils UKWe consider spatial point pattern data that have been observed repeatedly over a period of time in an inhomogeneous environment. Each spatial point pattern can be regarded as a “snapshot” of the underlying point process at a series of times. Thus, the number of points and corresponding locations of points differ for each snapshot. Each snapshot can be analyzed independently, but in many cases there may be little information in the data relating to model parameters, particularly parameters relating to the interaction between points. Thus, we develop an integrated approach, simultaneously analyzing all snapshots within a single robust and consistent analysis. We assume that sufficient time has passed between observation dates so that the spatial point patterns can be regarded as independent replicates, given spatial covariates. We develop a joint mixed effects Gibbs point process model for the replicates of spatial point patterns by considering environmental covariates in the analysis as fixed effects, to model the heterogeneous environment, with a random effects (or hierarchical) component to account for the different observation days for the intensity function. We demonstrate how the model can be fitted within a Bayesian framework using an auxiliary variable approach to deal with the issue of the random effects component. We apply the methods to a data set of musk oxen herds and demonstrate the increased precision of the parameter estimates when considering all available data within a single integrated analysis.PostprintPeer reviewe

    Rationale and design of a prospective, clinical study of kidney biopsies in people with type 2 diabetes and severely increased albuminuria (the PRIMETIME 2 study)

    No full text
    Introduction Diabetic kidney disease is a severe complication of diabetes. The diagnosis is based on clinical characteristics such as persistently elevated albuminuria, hypertension and decline in kidney function, although this definition is not specific to kidney disease caused by diabetes. The only way to establish an accurate diagnosis—diabetic nephropathy—is by performing a kidney biopsy. The histological presentation of diabetic nephropathy can be associated with a heterogeneous range of histological features with many pathophysiological factors involved demonstrating the complexity of the condition. Current treatment strategies aim to slow disease progression and are not specific to the underlying pathological processes.This study will investigate the prevalence of diabetic nephropathy in individuals with type 2 diabetes (T2D) and severely elevated albuminuria. The deep molecular characterisation of the kidney biopsy and biological specimens may pave the way for improved diagnostic accuracy and a better understanding of the pathological processes involved and may also reveal new targets for individualised treatment.Methods and analysis In the PRecIsion MEdicine based on kidney TIssue Molecular interrogation in diabetic nEphropathy 2 study, research kidney biopsies will be performed in 300 participants with T2D, urine albumin/creatinine ratio ≥700 mg/g and estimated glomerular filtration ratio &gt;30 mL/min/1.73 m2. Cutting-edge molecular technologies will be applied to the kidney, blood, urine, faeces and saliva samples for comprehensive multi-omics profiling. The associated disease course and clinical outcomes will be assessed by annual follow-up for 20 years.Ethics and dissemination The Danish Regional Committee on Health Research Ethics and the Knowledge Center on Data Protection (in the Capital Region of Denmark) have granted approval for the study. The results will be published in peer-reviewed journals.Trial registration number NCT04916132
    corecore