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Abstract

We consider spatial point pattern data that have been observed re-
peatedly over a period of time in an inhomogeneous environment. Each
spatial point pattern can be regarded as a “snapshot” of the underlying
point process at a series of times. Thus, the number of points and cor-
responding locations of points differ for each snapshot. Each snapshot
can be analysed independently, but in many cases, there may be little
information in the data relating to model parameters, particularly pa-
rameters relating to the interaction between points. Thus, we develop
an integrated approach, simultaneously analysing all snapshots within a
single robust and consistent analysis. We assume that sufficient time has
passed between observation dates so that the spatial point patterns can be
regarded as independent replicates, given spatial covariates. We develop
a joint mixed effects Gibbs point process model for the replicates of spa-
tial point patterns by considering environmental covariates in the analysis
as fixed effects, to model the heterogeneous environment, with a random
effect (or hierarchical) component to account for the different observation
days for the intensity function. We demonstrate how the model can be
fitted within a Bayesian framework using an auxiliary variable approach
to deal with the issue of the random effects component. We apply the
methods to a dataset of muskoxen herds and demonstrate the increased
precision of the parameter estimates when considering all available data
within a single integrated analysis.

Keywords: Data augmentation; Markov chain Monte Carlo; Mixed effects model;
Muskoxen data; Spatial and temporal point processes

1 Introduction

Collecting ecological data on the behaviour of individuals in space, i.e. data
that detail the exact spatial location of individuals, can be rather costly and/or
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technically challenging. Recent technology facilitates the collection of spatially
explicit data, for example via the use of GPS/Argos collars attached to indi-
viduals that record the location of the individual at given time intervals over a
period of time until the end of the experiment or the device “fails” (for exam-
ple from battery failure or the device becoming detached from the individual).
Applications range from large terrestrial (Babin et al. 2011 and Langrock et al.
2012, bison; Morales et al. 2004, elk) and marine mammals (Johnson et al.
2008, harbour seal; Jonsen et al. 2005, McClintock et al. 2012, grey seal) to
small insects (Wikelski et al. 2010, orchid bees) to name just a few. In such
studies, the biological mechanisms of interest often relate to the movement of
individuals over time and attributed to different underlying behaviours (Black-
well 2003, Morales et al. 2004, Breed et al. 2009 and McClintock et al. 2012).
However, in such studies only very few individuals from the study population
are typically monitored and the resulting data for individuals either analysed
independently of each other or assuming a common underlying model. Re-
cently, multiple animals have been considered simultaneously using hierarchical
random effect models to allow for individual variability, yet still only a small
proportion of all individuals are typically tagged (Langrock et al. 2012). Con-
sequently, it is difficult to directly model interactions between individuals and
draw meaningful biological conclusions relating to interactions between different
individuals/groups.

Alternatively, using for example an aerial survey, a snapshot can be taken of
the locations of all individuals within a given study area at a particular point in
time, i.e. a spatial pattern formed by the individuals at a given time (Cornulier
and Bretagnolle 2006, Illera et al. 2010). However, there is often limited infor-
mation contained within a single point pattern for drawing robust conclusions
on the ecological mechanisms of interest. This may lead to a series of point pat-
terns collected at repeated points in time. The snapshots of the same biological
species may be taken over different (non-overlapping) geographical regions or
repeatedly over the same study region for mobile individuals (as we will consider
in this paper). For such repeated point pattern data, individual points (i.e. in-
dividuals) are not uniquely identifiable (i.e. given any two individual points in
different snapshots we cannot identify whether they are the same individual or
not) so it is not possible to consider explicit spatio-temporal movement models
similar to those developed for GPS data, since these require the time-series of
the locations of individual animals. Thus, such snapshot data can be seen to
be in direct contrast to GPS collar data in that snapshots provide the location
of all individuals but only for a small number of times (possibly a single time);
whereas GPS collar data typically provides a long time-series of data on only a
small number of individuals (possibly only a single individual).

In general, for a single spatial point pattern dataset, the geometric arrange-
ment of the points in space that would be observed in a given area depends on
both the underlying intensity of individuals and the corresponding interaction
amongst these. Individual animals typically move around their home-range,
reacting to the environment and the location (or perceived location) of other
individuals (Jetz et al. 2004). For example, predators will be attracted to the
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location of their prey, while prey will be repulsed from the location of their
predators or animals may exhibit territorial behaviour. Plants may repel each
other as they compete for the same available resources, so that plants may be
unable to grow near another plant due to limited resources (one of the indi-
vidual plants is unable to compete as effectively for the resources and dies).
Alternatively, individuals may attract each other through mechanisms such as
facilitation where a plant species provides nutrients for another species (Brooker
et al. 2008, Illian et al. 2009). Individuals within a plant or animal popula-
tion typically perceive only their local neighbours and hence predominantly
interact with these (Law et al. 2001). Hence, the parameters in a Gibbs (or
Markov) point process model reflect local spatial interactions as well as the
underlying intensity of the points. Interactions can be regarded as “negative”
or “positive” between points, corresponding to repulsion or attraction among
individuals. Heterogeneity within the study area that may influence the local
intensity and/or interaction within the pattern, may be modelled via the use of
spatial covariate information. If covariate data are available, these are typically
included in a Gibbs process model as a fixed effect, often by a parametric func-
tion of the given spatial covariate(s) (Baddeley and Turner 2000; Baddeley and
Turner 2006).

We consider a series of spatial point pattern data observed over a period of
time, rather than a single point pattern. In many applications the number of
observed points in a single pattern may be too low for the resulting estimates to
be reliable, with very poor precision of the parameter estimates. Alternatively,
in other cases, even when it is possible to obtain estimates of the intensity and
interaction parameters for each independent dataset it can lead to inconsistent
parameter estimates among the different snapshots. This makes it more difficult
to sensibly interpret the model parameters, particularly if there is a general
interest in population dynamics across years rather than within the specific
years. We present an integrated approach where we jointly model all the spatial
point patterns within a single analysis.

Integrated data analyses, simultaneously analysing all available data within a
single analysis, can provide improved parameter estimates in terms of increased
precision since information can be “borrowed” across the different datasets.
Such integrated analyses are becoming increasing popular in the area of statis-
tical ecology but are less common for spatial point processes; see for example
Besbeas et al. (2003), Brooks et al. (2004), Schaub et al. (2007), Gauthier et al.
(2010), King et al. (2008), Besbeas et al. (2009), Reynolds et al. (2009), King
et al. (2009), Cave et al. (2010), McCrea et al. (2010), Illian et al. (2012b)
and references therein. For spatial point patterns, repeated data could occur
at the temporal of geographical scale. For snapshots taken over different (non-
overlapping) geographical regions, the observed point patterns are assumed to
be independent, given the underlying environment. Using repeated snapshot
data of the same study area, assuming that the periods between observation
times are sufficiently long, the observed point patterns may be assumed to be
independent, given the environment within the study area. Considering an inte-
grated analysis permits the incorporation of regional variability (for snapshots
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of different regions) or temporal variability (for repeated snapshots of the same
region) within a consistent framework. For the muskoxen data described in
Section 2, snapshots are taken on a weekly basis during the study period. To
demonstrate the methodology we consider snapshots which correspond to a lag
of (approximately) one year, removing any potential dependence between suc-
cessive snapshots (conditional on spatial covariates) and the need to consider
additional factors such as seasonal migration (see Section 2 for further discus-
sion).

We follow Illian and Hendrichsen (2010) who propose a mixed effects model
resulting from replicated spatial point patterns, allowing for a temporal random
effect component within the model combined with a fixed effects environmental
component. In particular, they re-express the conditional likelihood so that
it is equivalent to the log-likelihood of independent weighted Poisson variables
using the Berman-Turner device. Consequently, this permits the calculation of
the MLEs of the parameters via the use of standard software for generalised
linear mixed models (GLMMs). However, this model-fitting approach assumes
independence among the points of a single snapshot within the log-likelihood
expression, so that the standard errors of the parameters and resulting test
statistics generated by the software cannot be interpreted directly.

In this paper, we provide a framework for fitting mixed effects models within
a Bayesian setting, where we are able to estimate the uncertainty associated
with the parameter estimates, for example, using posterior credible intervals.
In Section 2 we introduce the data and provide the mathematical notation used
throughout. In Section 3 we describe a mixed effects model, where there are
both fixed effects, corresponding to the environmental covariate, and temporal
random effects that may influence the intensity of the point process. In Section
4 we describe a Bayesian approach (using Markov chain Monte Carlo and data
augmentation) that can be used to fit the mixed effect model. We present
the corresponding results obtained for the given data in Section 5. Finally, we
conclude with a discussion in Section 6.

2 Data and Notation

We consider the locations of muskoxen herds (Ovibos moschatus) in an area near
the Zackenberg Research Station in Northeast Greenland (74◦30′N, 21◦00′W ).
Data are collected as part of the Zackenberg monitoring programme, with the
dual aim of investigating ecosystem functioning in a high Arctic Ecosystem,
and monitoring ecosystem response to climatic change. The muskoxen data are
recorded weekly through field surveys and represent near-total counts, aging
and sexing of animals within the valley. During the summer, muskoxen migrate
into the area from adjacent areas and the density of animals within the valley
therefore increases from late spring to early autumn (Berg 2003). We consider
the snapshot of the muskoxen taken in week 34 of each year from 1999 to 2007,
except for 2006 where we use the snapshot in week 33 as this was the final snap-
shot collected in that year. These weeks lie in the height of the summer, before
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the autumn rut. Considering snapshots of (approximately) one year apart, it
seems reasonable to be able to assume that they are independent of each other,
due to the very long time lag between snapshots. In addition, considering the
snapshots taken at the same time of year reduces additional temporal variability
due to seasonal affects, including seasonal migration. The data snapshots are
presented in Figure 1, including the corresponding boundary of the study area,
plotted with graded contours for the altitude of the region. Clearly, we can see
from the figure that there appears to be substantial variability in the number of
muskoxen herds observed in the study period over time, from a minimum of 16
herds in 1999 to a maximum of 54 herds in 2004. In addition, Figure 1 suggests
that the location of the herds are negatively related to altitude (i.e. there are
fewer herds at higher altitudes), which has been identified in previous analyses
(Forchhammer et al. 2008). Thus, we include altitude as an environmental
covariate in the analysis.

[Figure 1 about here.]

Notationally, we let Nt denote the number of observed muskoxen at time
t = 1, . . . , T , where T = 9, corresponding to years 1999 to 2007 and xtj the
location of herd j = 1, . . . , Nt at time t = 1, . . . , T . For notational convenience,
we let xt = {xtj : j = 1, . . . , Nt}, so that xt denotes the set of muskoxen herd
locations at time t = 1, . . . , T . In other words xt denotes the spatial point
pattern data at time t. The muskoxen herds represented by the points observed
at a given time are assumed to interact. However, since the muskoxen herds are
motile, they only interact with muskoxen observed at the same time point and
are assumed to be independent of muskoxen locations at all other time periods,
i.e. xt1 and xt2 are independent for t1 6= t2 (conditional on the environmental
covariate). Further we set x = {xt : t = 1, . . . , T }, so that x denotes the set of
all spatial point pattern data. We let W denote the study region. Finally, for
location u ∈ W , we let y(u) denote the corresponding (normalised) altitude of
location u, and set y = {y(u) : u ∈ W}. We note that in this example W is
constant over time, but more generally it is possible to allow the study region to
vary over the time points. Similarly, while the covariate altitude does not vary
among the time points it is straightforward to include time-varying covariates
in the model.

3 Models

We assume that the point patterns x1, . . . ,xT are independent (conditional on
the environmental covariate) and model them using a Gibbs process (Stoyan
et al. 1995; van Lieshout 2000; Møller and Waagepetersen 2007; Illian et al.
2008). In other words, we assume that at time t the density and hence the
conditional intensity of the process is a function of the intensity and interaction
parameters. We initially describe the point process model for a single point
pattern, before extending the ideas to include both fixed effects (relating to an
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environmental covariate) and random effects (relating to temporal heterogene-
ity).

3.1 Area interaction process

We note that many Gibbs processes, in particular pair-wise interaction pro-
cesses, may only be used to model repulsive inter-individual interaction. Ani-
mals that display scramble competition, i.e. utilize resources which they do not
have exclusive access to, face a degree of cost associated with social interactions
over access to forage and other resources, which may lead to such a repulsive
interaction (Nicholson 1954; Hassell 1975). However, conversely, several factors
may cause animals to aggregate, including kinship, mating behaviour and preda-
tor avoidance (Caraco et al. 1980; Janson 1988). Ungulates can exhibit both
attraction and repulsion towards each other depending on factors such as the
age, sex and breeding status (Li et al. 2012), so that we use an area interaction
process (Baddeley and van Lieshout 1995) to potentially consider both positive
and negative interactions for the muskoxen herds.

We initially consider a single spatial point pattern xt = {xt1, . . . , xtNt
}. The

conditional intensity is given by,

λ(xtj ;xt) = κtγ
−AW,t(xtj)
t ,

where,
AW,t(xtj) = AW,t(xt)−AW,t(xt\{xtj})

such that AW,t(xt) denotes the area in the region W that lies within distance
R of any of the points in xt = {xt1, . . . , xtNt

}. Mathematically, if we let D(xtj)
denote the disc of radius R centred at xtj within region W , we can write

AW,t(xt) = ∪Nt

j=1D(xtj). Thus, AW,t(xtj) is the area of “single occupancy”
of the disc D(xtj) within region W (i.e. the area of the disc of radius R centred
at xtj within region W that does not overlap with any other discs of radius R
centred at xti, for all i 6= j).

We follow the approach used in R-library spatstat (Baddeley and Turner
2011) and use the transformation to the canonical scale-free parametrisation by

setting ηt = γπR2

t and βt =
κt

ηt
. Thus, the conditional intensity can be written

as
λ(xtj ;xt) = βtη

1−BW,t(xtj)
t ,

where BW,t(xtj) = AW,t(xtj)/πR
2 and 1 − BW,t(xtj) can be interpreted as the

proportion of the disc centred at xtj that overlaps with the union of all other
discs centred at xti for i 6= j within region W , or the proportion of the area of
“multiple occupancy” for point xtj with respect to xt\xtj . The parameter βt

is the intensity of the process and the parameter ηt relates to the interaction
strength of the process at time t. The pseudolikelihood can then be written as a
product over all observed data points of the corresponding conditional intensity
for each point (Besag 1977). For example, for the point process at time t, the
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pseudolikelihood is given by,

f(xt|βt, ηt) = α(βt, ηt)

Nt
∏

j=1

λ(xtj ;xt)

= α(βt, ηt)β
Nt

t η
(Nt−BW,t(xt))
t , (1)

where BW,t(xt) =
∑Nt

j=1 BW,t(xtj). The term α(βt, ηt) is given by,

α(βt, ηt) = exp

(

−

∫

W

λ(u;xt)du

)

,

such that for u /∈ xt,

λ(u;xt) = βtη
(1−BW,t(u))
t ,

where BW,t(u) = AW,t(u)/πR
2 = [AW,t(xt ∪ {u})−AW,t(xt)]/πR

2.
It is possible to fit separate area interaction processes to each dataset xt

independently of the other datasets. However, we now extend these processes
to allow for the intensity to be a function of the environmental covariates (in
this case using altitude as an example) with a random effects component to
model the temporal heterogeneity, allowing information to be shared across the
different datasets.

3.2 Mixed effects model

We consider, in turn, the intensity and interaction functions within the model.
For the intensity function, we assume a mixed effects model consisting of a
fixed effects component relating to the environmental covariate (altitude) and
a random effects (or hierarchical) component to model temporal heterogeneity.
We initially assume that the interaction function, modelling the interaction
among herds, is constant over time and space, but extend to a random effects
model for the interaction function in Section 5.

We begin with the (more complex) intensity function. For t = 1, . . . , T , we
specify the intensity function, evaluated at location u ∈ W to be of log-linear
form,

βt(u) = exp(θ1 + φ1,t + δ × y(u)), (2)

so that the intensity parameters are a function of location, and set

φ1,t ∼ N(0, σ2),

for t = 1, . . . , T . The term θ1 denotes the underlying intensity rate; φ1 =
{φ1,t : t = 1, . . . , T } the temporal random effects on the intensity rate with
random effect variance term, σ2, and δ the (homogeneous) fixed effect regres-
sion coefficient for the environmental covariate. We use normalised values for
y(u) throughout (normalised over the full region W ) as we consider a Bayesian
approach (see for example King et al. 2009, for further discussion).
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We now consider the interaction function. We assume that the interaction
strength among the muskoxen herds is constant over time and study area. Thus,
we set ηt = η for all t = 1, . . . , T , and reparameterise to set θ2 = log η. Within
this model a value of θ2 > 0 corresponds to attraction among the herds, while
θ2 < 0 corresponds to inhibition.

3.3 Likelihood

The model parameters to be estimated are ζ = {θ1, δ, σ
2, θ2}. We initially

consider the contribution to the likelihood for a single snapshot xt, extending
equation (1). The intensity parameter is a function of the observed (normalised)
environmental covariates y and random effect component. Substituting the
interaction and intensity functions into equation (1) and integrating out the
random effect term φ1,t, we obtain the likelihood contribution for snapshot t,

f(xt|ζ,y) =

∫

R



αt(ζ) exp (θ2 × [Nt −BW,t(xt)])

Nt
∏

j=1

exp(θ1 + φ1,t + δ × y(xtj))p(φ1,t|σ
2)



 dφ1,t,

where p(φ1,t|σ
2) denotes the probability density function of a N(0, σ2) distri-

bution evaluated at φ1,t and,

αt(ζ) = exp

(

−

∫

W

exp(θ2 × [1−BW,t(u)]) exp(θ1 + φ1,t + δ × y(u))du

)

. (3)

We note that the function BW,t(·) has no closed mathematical form. To evaluate
this function at u, say, we use a Monte Carlo type approach, randomly simu-
lating a set of points in D(u), the disc centred at u within the region W , and
calculate the proportion of points that fall in an area of “multiple occupancy”
(i.e. within a distance of R from any point in xt\{u}). The integral within the
function for the α term is analytically intractable, and is calculated via numer-
ical integration. Note that typically the Berman-Turner device (Berman and
Turner 1992; Baddeley and Turner 2000) is used to perform this numerical inte-
gration in the term αt(ζ) due to the simplification of the likelihood expression,
but in general, alternative numerical integration algorithms can be used.

We assume that the spatial point patterns for different times are independent
conditional on the environmental covariates, so that we can express the joint
pseudolikelihood over all snapshots, in the form,

f(x|ζ,y) =

T
∏

t=1

f(xt|ζ,y).

However, we note that we relax the independence assumption of the random
effect terms in Section 5.3.
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4 Methods

We consider a Bayesian analysis of the data and initially describe the Markov
chain Monte Carlo (MCMC) approach that we implement to obtain a sam-
ple from the posterior distribution of the model parameters of interest. To
reduce the numerical integration necessary in the evaluation of the likelihood
expression, we use a data augmentation approach (Tanner and Wong 1987). In
particular we introduce the φ1 terms as auxiliary variables (or parameters) to
be estimated within the Bayesian analysis. We then form the joint posterior
distribution over the model parameters, ζ, and auxiliary variables, φ, given by,

π(ζ,φ|x,y) ∝ f(x|ζ,φ,y)p(ζ,φ).

We briefly discuss the prior p(ζ,φ), before considering the (conditional) likeli-
hood term f(x|ζ,φ,y). The prior on the parameters can be decomposed into,

p(ζ,φ) = p(ζ)p(φ|σ2).

Assuming independence of the temporal random effects, we can write,

p(φ|σ2) =

T
∏

t=1

p(φ1,t|σ
2),

where p(φ1,t|σ
2) denotes the density of a Normal distribution with mean 0

and variance σ2, corresponding to the temporal random effect component. We
specify independent priors on the model parameters of the form,

θi ∼ N(µi, τi) i = 1, 2;

σ2 ∼ Γ−1(a1, a2); δ ∼ N(µδ, τδ).

With no expert prior information on these parameters, we set µ1 = µ2 = µδ = 0;
τ1 = τ2 = τδ = 1002 and a1 = a2 = 0.001. Note that we perform a prior sen-
sitivity analysis by considering different prior specifications on the parameters
(see Section 5 for further discussion).

We now return to consider the term f(x|ζ,φ1,y), which can be regarded as
the conditional pseudolikelihood of the data, given both the model parameters,
ζ, and random effect terms, φ1. This (conditional) pseudolikelihood can be
explicitly written as,

f(x|ζ,φ1,y) =

T
∏

t=1

ft(xt|ζ,φ1,y),

where

ft(xt|ζ,φ1,y) = αt(ζ) exp (θ2 × [Nt −BW,t(xt)])

Nt
∏

j=1

exp(θ1 + φ1,t + δ× y(xtj))
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where αt(ζ) is given in equation (3). The posterior distribution of the model pa-
rameters, ζ, can then be obtained by taking the marginal posterior distribution
(i.e. integrating out over the random effects terms, φ1),

π(ζ|x,y) =

∫

π(ζ,φ1|x,y)dφ1.

Thus, the Bayesian approach does not remove the necessity of integrating out
the random effect terms, but the integration is essentially performed within the
MCMC algorithm, which obtains a sample from the joint posterior distribution
over both ζ and φ. Given a sample from the joint posterior distribution, to
obtain a sample from the marginal distribution of ζ (i.e. to integrate out over
φ), we simply take the sampled ζ values, irrespective of the associated values of
φ and calculate the corresponding summary statistics of interest (as we would
when simply calculating marginal posterior summary statistics of a single pa-
rameter in any Bayesian analysis). See King et al. (2009) and Bonner et al.
(2010) for further discussion.

To obtain a sample from the joint posterior distribution π(ζ,φ|x,y) we use
a hybrid or Metropolis-within-Gibbs algorithm. In particular, at each iteration
of the Markov chain, we cycle through each parameter and update the parame-
ter using either a random walk Metropolis-Hastings step with Normal proposal
density or Gibbs step (if the posterior conditional distribution is of standard
form), see for example Brooks (1998) for further details. In particular, we use
a Gibbs step for σ2 (since the posterior conditional distribution has an Inverse
Gamma distribution) and a Metropolis-Hastings step for all other parameters.
To obtain efficient proposal updates for the Metropolis-Hastings step we used
a pilot-tuning procedure that involved running a series of short MCMC simula-
tions using a variety of different Normal proposal variances and comparing the
mixing of the subsequent chains via a combination of trace plots, mean accep-
tance probabilities and autocorrelation function (acf) plots. To obtain a sample
from the marginal distribution π(ζ,σ2|x,y), we simply consider only those re-
alisations from the MCMC algorithm for the model parameters ζ (essentially
integrating out over the random effect terms). However, we note that using this
approach we are also able to immediately provide posterior marginal estimates
of the random effect parameters, which may be of interest themselves, as they
provide information on the magnitude and/or sign of the random effect at each
time.

For the particular datasets that we consider, the MCMC simulations are
run for 10,000 iterations for each individual snapshot and 20,000 iterations for
the integrated analysis, simultaneously analysing all datasets within a single
analysis, with the first 10% discarded as burn-in in each case. The Metropolis-
Hastings variance proposal parameter is pilot-tuned for each individual dataset.
Independent replications starting from over-dispersed starting points produced
essentially identical results and the Brooks-Gelman-Rubin (BGR) statistic for
each of the parameters did not indicate any lack of convergence (Brooks and
Gelman 1998).
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5 Results

We initially analyse each individual spatial point pattern separately. We then
consider an integrated analysis, simultaneously analysing all available data, us-
ing random effects to model temporal heterogeneity, providing a consistent and
robust approach. We set an interaction radius for the discs centred on each
point to be R = 125. This is slightly larger than the interaction radius used by
Illian and Hendrichsen (2010), who use 2R = 200 and consider a pairwise inter-
action function. The specification of the slightly larger radius here is to ensure
there are observed overlaps between at least two herds within each dataset.

5.1 Independent analysis

We analyse each spatial point pattern independently for each year from 1999 to
2007, so that we have parameters θ1,t, θ2,t and δt for t = 1, . . . , 9. The corre-
sponding MLEs are presented in Table 1(a) and the posterior median (standard
deviation) and 95% symmetric credible interval (CI) using the Bayesian analysis
in Table 1(b). We use the posterior median as the marginal posterior distribu-
tions for the interaction parameter θ2 is skewed in a number of years. The
posterior medians appear to be generally similar to the corresponding MLEs of
the parameters (differences are greatest for the most heavily skewed posterior
marginal distributions). Clearly, there appears to be significant variability in es-
timates of the intensity parameter θ1,t over time (with several non-overlapping
credible intervals between years). The posterior estimates of the interaction
parameters θ2,t have relatively low precision (high posterior standard deviation
and wide 95% symmetric CIs), suggesting that, in general, there is limited infor-
mation in a single spatial point pattern to estimate the interaction parameter.
However, there is possibly some evidence that the interaction also varies over
time, with some non-overlapping credible intervals with regard to θ2,t, and the
value of 0 not contained within three 95% symmetric CIs (corresponding to no
interaction present). The regression coefficient δ appears to be fairly similar
across years, allowing for the uncertainty with regard to the estimate. For ex-
ample, the 95% symmetric CIs for δ all overlap for the different years. The
years with smaller numbers of herds observed (1999-2003, with a range of 16-25
herds) have generally wider credible intervals on the parameter estimates than
years where larger numbers of herds are observed (2004-2007, with a range of
40-54 herds). This is to be expected, since the larger the number of data points
observed within a single snapshot, the greater the amount of information in the
dataset regarding the parameters. One would normally not attempt to fit a
model to patterns as small as those for the earlier years, as there is not enough
information in the data of a single pattern for inference.

[Table 1 about here.]

However, combining all datasets within a single integrated analysis using a
mixed effects model allows information to be “borrowed” across snapshots, thus
providing an integrated and robust analysis of all available data. Note that
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within the model described in Section 3 we initially assume the same interaction
function and spatial environmental covariate dependence (i.e. θ2 and δ) for each
dataset, but allow for additional temporal variability in the intensity function
via the additional random effects component, as described in Section 3.2.

5.2 Integrated analyses

We initially consider a mixed effects model for the intensity function and fixed
effects (time homogeneous) model for the interaction function. The correspond-
ing posterior summary statistics for the parameters are provided in Table 2.
Clearly, the environmental covariate (altitude) has a negative influence on the
intensity of the spatial point pattern (posterior probability of 1.00 that the in-
fluence is negative). In addition, there appears to be a fairly strong temporal
effect on the underlying intensity rate of the spatial point patterns, with a poste-
rior median of 0.27 for the random effect variance and 95% symmetric CI (0.09,
1.06). The random effect terms φ for the intensity function can be estimated
directly, as they are imputed within the MCMC simulations. Given the presence
of a temporal random effect, there is positive evidence (Bayes factor > 3) for
a negative temporal random effect compared to the underlying mean intensity
rate in 2003 and strong evidence (Bayes factor > 20) in years 1999-2001 (Kass
and Raftery 1995). Similarly, there is positive evidence of a positive temporal
random effect in 2005 and 2006, and strong evidence in years 2004 and 2007.
The posterior probability of a positive interaction (i.e. θ2 > 0) is equal to 0.87
(or Bayes factor of 6.8) providing positive evidence of clustering of the herds.

[Table 2 about here.]

These results appear to reflect the increase in population size between 1999
and 2007 reported by Hansen et al. (2011). During this period the population
density in the valley (measured as the maximum number of animals observed
from a fixed point on any given day during the summer census) increased from
(approximately) 20 individuals in 1999 to 110 in 2007, after which it has started
to decrease again (Hansen et al. 2011). The population in the Zackenberg region
is part of a larger population spanning Wollaston Foreland, Clavering Island
and adjacent regions, so that the population increase does not reflect changes
in population size per se, but the net influx of animals into the Zackenberg
valley during the summer season. This influx is likely to be caused by a higher
than average forage availability and/or quality (Forchhammer et al. 2005), an
assumption supported by the seasonal increase in calves, yearlings and females
(Berg 2003; Hansen et al. 2011), i.e. animals with need for high quality forage.

Comparing the integrated results with those obtained from the separate anal-
yses in Table 1, we can clearly see that the posterior precision of the parameters
(θ1, δ and θ2) is significantly improved within the integrated analysis. This is a
direct result of using all available data within a single integrated analysis, allow-
ing information to be shared across datasets. For example, the estimate of δ is
more precise within the integrated analysis, and consequently clearly confirms a

12



negative effect of altitude on intensity (i.e. fewer herds at higher altitudes). In
the single analyses for each year, there is greater uncertainty in the magnitude
of the effect of altitude on the intensity and even the sign of this parameter in
years 2001 and 2005. In addition, within the independent analyses, the sign of
the interaction parameter, θ2, corresponding to attraction/repulsion is gener-
ally unclear. However, within the integrated analysis, there is positive evidence
that the interaction is positive, corresponding to clustering of muskoxen herds
which is likely to be related to the spatial distribution of food resources causing
herds to aggregate in areas with access to forage. In particular, there is con-
siderable variation in the distribution of plant communities within the census
area (Elberling et al. 2008) and muskoxen show a clear preference for vege-
tation areas dominated by fen, grassland and salix snow beds, accounting for
approximately 75 percent of observations, although these vegetation types only
represent approximately 30 percent of the census area (Berg et al. 2008).

5.3 Sensitivity Analyses

We consider the sensitivity of the results on both the priors specified on the
parameters and the modelling assumptions. We begin by considering the sensi-
tivity of the posterior results on the priors specified. In particular, we increase
the prior standard deviation of the Normal priors on the underlying intensity
rate, θ1, and interaction parameters, θ2, by a factor of 10 and also specify
σ ∼ U [0, 100] (Gelman 2006). The posterior results appear to be insensitive to
these different priors, with the same interpretation of the posterior results.

To assess the sensitivity of the model assumptions we consider a range of
sensitivity analyses. In particular, we consider (i) the model with an additional
temporal random component in the interaction function; (ii) changing the spec-
ified interaction radius; and (iii) removing the independence assumption on the
random effect terms for the intensity function. We consider each in turn.

(i) Temporal random effects for interaction function

We consider an additional temporal random effect component on the interaction
parameter, analogous to the random effect component on the intensity param-
eter. In particular, for the observed point process xt for t = 1, . . . , T , we set,

ηt = exp(θ2 + φ2,t),

such that φ2,t ∼ N(0, ν2), independently, and where ν2 is a parameter to be
estimated. The corresponding likelihood contribution for point process xt is
given by,

f(xt|ζ, ν
2,y) =

∫

R

∫

R



α(ζt, ν
2) exp ([θ2 + φ2,t]× [1−BW,t(xt)])

×

Nt
∏

j=1

exp(θ1 + φ1,t + δ × y(xtj))p(φ1,t|σ
2)p(φ2,t|ν

2)



 dφ2,tdφ1,t,
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where p(·|·) denotes the probability density function of a normal distribution
with mean zero and given variance term, evaluated at the specified value, and

α(ζt, ν
2) = exp

(

−

∫

W

exp([θ2 + φ2,t]× [1−BW,t(u)]) exp(θ1 + φ1,t + δ × y(u))du

)

.

A data augmentation approach, analogous to that described in Section 4 can
be implemented, introducing φ2 = {φ2,t : t = 1, . . . , T } as auxiliary variables
within the Bayesian analysis.

The results obtained for the underlying intensity rate and regression coeffi-
cient were generally very similar, with only minor changes in the posterior sum-
mary statistics for these parameters. For example, the posterior median (95%
symmetric CI) for θ1 and δ were −14.94 (−15.31, −14.51) and −0.64 (−0.81,
−0.48), respectively. The estimates of the intensity random effect terms (σ2 and
φ1) were generally similar (posterior median (95% CI) for σ2 of 0.29 (0.10, 1.24)
- the credible interval is slightly larger than for the previous model, which is to
be expected since an additional parameter has to be estimated). In particular
the interpretation of the random effect terms on the intensity parameters re-
mains consistent, with evidence for a negative random effect in years 1999-2001
and 2003 and a positive random effect in years 2004-7. The underlying inter-
action parameter θ2 has a significantly increased posterior standard deviation
with the addition of temporal heterogeneity on the interaction function. The
posterior median (standard deviation) of 0.09 (0.98) and 95% CI(-2.24, 1.81).
The corresponding random effect variance has posterior median (95% symmetric
CI) of 3.31 (0.31, 20.73). There is only (positive) evidence for three years that
the interaction differs to the mean underlying interaction rate, corresponding to
a higher interaction in 2007 and lower interaction in years 2004 and 2006. This
sensitivity analysis suggests that there is relatively little information contained
in the data relating to the interaction among the muskoxen herds, leading to a
generally poor precision of the estimation of these parameters.

(ii) Interaction radius

To assess the dependence of the results on the interaction radius specified, we
repeat the analysis of the model specified in Section 3 for two further interaction
radii. In particular we consider interaction radii corresponding to changing this
radius by a factor of approximately one third (i.e. increasing or decreasing
the radius by one third, and rounding to the nearest 10). In particular, we
consider an increased interaction radius of 170, so that muskoxen herds are able
to interact with herds further away than previously; and a decreased interaction
radius of 80. We note than interaction radius of 80 leads to two snapshots,
corresponding to the years 1999 and 2001, for which no herds were within the
interacting distance of each other, i.e. no recorded points within a distance of
2R of each other. (A minimum radius of 112 is needed to ensure all snapshots
have herds within the interacting distance). As would be expected, when the
interaction radius is decreased, the interaction function provides evidence for
a stronger inhibition (posterior median of θ2 of -1.77 with 95% symmetric CI
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(−3.83,−0.19), with fewer points within the interacting distance of each other.
When the interaction radius in increased, there is evidence for a clustering
effect (posterior median of θ2 of 1.33 with 95% symmetric CI (0.80, 1.82) due
to the number of points within the interacting distance of each other. However,
in all analyses, the negative relationship between the intensity and altitude is
consistent, with posterior medians for δ within ±0.03 of the previous analysis
with R = 125 and very similar widths for the 95% credible intervals. The
underlying mean intensity rate, θ1, is consistent for the different interaction
radii, with the same posterior median to 1 decimal place, and similar width
95% credible intervals; and the same years identified (2004 and 2007) with the
95% symmetric CIs for the random effects terms not containing 0 within the
intensity function.

(iii) Dependent temporal random effects

Finally, we remove the independence assumption on the random effect error
terms and consider alternative (non-independent) random effect models: a ran-
dom walk and a moving average of order 1 (i.e. an MA(1) model). For example,
the random walk process is specified such that for t = 2, . . . , T ,

φ1,t ∼ N(φ1,t−1, σ
2
RW )

where σ2
RW is the associated random walk variance to be estimated. For the

MA(1) model for t = 2, . . . , T , we specify,

φ1,t = kωt−1 + ωt,

such that ωs ∼ N(0, σ2
MA), independently for all s = 1, . . . , T . For identifiability

for both models we specify φ1,1 = 0. We specify independent (non-informative)
priors, such that σ2

RW , σ2
MA ∼ Γ−1(0.001, 0.001) and k ∼ N(0, 1002) for the

AR(1) and MA(1) models.
For each of these models, very similar results are obtained for the environ-

mental regression coefficient, δ, intensity parameters for each year, (θ1 + φ1,t)
for t = 1, . . . , T and interaction parameter, θ2 (i.e. the same posterior median
and 95% CIs to 2 significant figures). For the MA(1) process, the posterior
median (95% CI) for σ2

MA is 0.17 (0.05, 0.71), and for k, 0.37 (-0.18, 0.82). The
posterior credible interval for the variance component significantly overlaps with
that obtained assuming independent random effects (see Table 2). In particular,
the probability that the random effect variance for the MA(1) model is lower
than that for the independent model, Pπ(σ

2
MA < σ2), is 0.68 (or Bayes factor of

2.16), which does not provide positive support for a lower variance component.
In addition, the value of k = 0, corresponding to independent random effects
is also contained within the 95% CI for this parameter. For the random walk
the posterior median (95% CI) for the random effect variance component, σ2

RW ,
is 0.14 (0.04, 0.63). Once more the posterior credible interval for the variance
component significantly overlaps with that obtained when the random effects
terms are independent (and when an MA(1) model is fitted). The posterior
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probability that the variance component is less for the random walk model than
the independent model, Pπ(σ

2
RW < σ2), is 0.73 (or Bayes factor of 2.81), close

to positive evidence of a smaller variance term (Kass and Raftery 1995). How-
ever, we note that with only 9 snapshots within our data series, the ability to
identifying additional structure within the random effects will be limited.

Overall, the similarity in the results and corresponding interpretation for the
intensity and regression coefficient parameters across the different models and
priors suggests that these results are generally robust with regard to the model
specified on the interaction function.

6 Discussion

Collecting ecological data on population dynamics and spatial distribution of
long lived animals is associated with a number of logistic and often also fi-
nancial challenges. Data series following a certain population of individually
marked animals over long time whilst sampling a wide range of biotic and abi-
otic parameters, such as the Soya sheep data from St Kilda (Clutton-Brock
and Pemberton 2004) are of high value in ecology, but uncommon. Fragmented
and/or sparse data sets are common in biology, and may pose a limit to the
ecological questions that can be addressed. Nevertheless, understanding the
temporal and/or spatial dynamics of populations is of fundamental importance
for species management and conservation (Aarts et al. 2008). The spatial po-
sition of animals is of paramount importance in understanding the interactions
of individuals, populations and species with their environment. Methods which
can aid transferring of data from data-poor to data-rich areas or utilise repeated
measures more efficiently are therefore potentially relevant within a wide range
of biological applications.

We have presented a robust integrated approach for analysing a series of spa-
tial point patterns, where a single individual pattern does not in itself provide
sufficient information to realistically incorporate or allow the interpretation of
interesting biological processes. However, analysing the sequential point pat-
terns simultaneously, allowing for temporal heterogeneity within the intensity
function, we are able to decode some of the spatial relationship between a large
ungulate and spatial covariate (altitude) whilst permitting social interactions
between herds. The temporal biological model is formulated mathematically by
introducing a random effects component (on the intensity function) within the
model structure. This approach uses all the available information when fitting
the model to the data, so that more precise and consistent estimates for datasets
with relatively few data points (and hence limited information in the data) can
be obtained, by essentially “borrowing” information from the other independent
datasets and providing consistent estimates across all the spatial point patterns.
Consequently, we demonstrate that implementing a single integrated analysis
can significantly increase the precision of the parameter estimates when there is
limited information on a particular parameter(s), for example, the interaction
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parameter for the study dataset. Using this approach for the muskoxen data
there appears to be evidence for a strong negative relationship between the in-
tensity of the muskoxen and the altitude, so that muskoxen appear to prefer
the lower regions of the study area, previously identified by Forchhammer et al.
(2005). This relationship is less clear within the single independent analyses.
For the given dataset, we primarily considered a random effect component on
the underlying intensity parameter, but the approach is generalisable, for ex-
ample, to allow for temporal heterogeneity on the regression coefficient for the
environmental covariate. Since interaction concerns second and higher order
information in the data there is typically less information contained within the
data relating to the interaction function than the intensity function. In partic-
ular in the context of datasets with relatively few observed points, this would
also suggest that it may be difficult to identify temporal heterogeneity within
the interaction parameter, as is the case here when a random effect component
was added.

We have described and implemented a Bayesian data augmentation ap-
proach, whereby the temporal random effect terms are imputed within the
MCMC algorithm and essentially integrated out by considering the marginal
distribution of the model parameters. Consequently, since the random effect
terms are imputed at each iteration of the Markov chain, obtaining posterior
estimates or these random effect terms is immediate. These can be of interest in
themselves, for example, in identifying which datasets have a positive/negative
temporal random effect component within the intensity function and/or com-
paring the magnitude of the random effects between datasets to investigate the
strongest deviation from the underlying mean. In addition, and in contrast to
the previous approach proposed by Illian and Hendrichsen (2010), we are able
to easily obtain posterior credible intervals for each of the parameters providing
a measure of the precision of the parameters of interest.

Future work in this area includes the consideration of model selection in
terms of covariates that may be present in the model. In particular, it is cur-
rently not known what drives the variation in population size and influx into
Zackenberg during the summer months, but the change in population density
coincides with a marked advancement in the onset of spring affecting the phenol-
ogy of a wide range of species in the Zackenberg region. Thus additional covari-
ates that we may wish to assess for a relationship with intensity (or interaction)
include vegetation composition, normalised difference vegetation index (NDVI)
and spring snow cover. Model selection within the classical framework can be
achieved via the use of likelihood ratio tests and/or AIC statistic. Alternatively,
within the Bayesian framework Bayes Factors (or equivalently, posterior model
probabilities) can be used to quantitatively discriminate between the compet-
ing models, and calculated using, for example, reversible jump Markov chain
Monte Carlo (Green 1995). In the analyses within this paper, the posterior
results are largely insensitive to the prior specification on the parameters. How-
ever, Bayes Factors (by their mathematical definition) are typically sensitive to
the priors specified on these model parameters. Thus, further research includes
the sensitivity of the Bayes Factors on the priors specified on the parameters
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and consequently the specification of biologically plausible priors. Applying
such an approach would permit a detailed analyses of the joint factors of social
interactions and resource availability which both shape animal spatial distri-
butions. Such analyses therefore may provide an improved use of sparse data
to explain ecological patterns. In addition, much recent research has focused
on developing computationally efficient methods for fitting spatial models in a
Bayesian context based on integrated nested Laplace approximations (INLA)
(Rue et al. 2009); see also the work by Lindgren et al. (2011). For example, a
log Gaussian Cox process model has been fitted to replicated patterns formed
by the muskoxen herds (Illian et al 2012a,b), although this approach cannot
account for second or higher order spatial behaviour. The application of the
INLA approach to such spatial point processes is an area of ongoing research.
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Figure 1: The location of the muskoxen in each snapshot for years 1999-2007
and corresponding contours of the altitude, with the boundary of the study area
included.
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Table 1: Independent analyses for each spatial point pattern for years 1999-2007,
using both classical and Bayesian approaches.

(a) MLE for each parameter

θ1,t θ2,t δt
Year MLE MLE MLE
1999 -15.93 0.29 -1.31
2000 -15.81 3.29 -0.98
2001 -15.24 -5.06 -0.11
2002 -15.19 -0.53 -0.89
2003 -15.37 1.60 -0.82
2004 -14.40 -2.38 -1.00
2005 -14.37 0.69 -0.19
2006 -14.43 -3.37 -0.41
2007 -14.60 1.20 -0.97

(b) Posterior median (standard deviation) and 95% symmetric credible interval (CI) for each parameter

θ1 θ2 δ
Year Median (SD) 95% CI Median (SD) 95% CI Median (SD) 95% CI

1999 -16.07 (0.50) (-17.26, -15.28) -0.47 (2.70) (-7.66, 3.04) -1.42 (0.56) (-2.73, -0.52)

2000 -15.92 (0.40) (-16.84, -15.26) 3.19 (0.98) (0.89, 4.70) -1.05 (0.44) (-2.08, -0.35)

2001 -15.29 (0.26) (-15.84, -14.83) -10.33 (12.78) (-46.33, 1.07) -0.13 (0.26) (-0.69, 0.34)

2002 -15.24 (0.29) (-15.89, -14.73) -1.03 (2.25) (-6.71, 2.10) -0.92 (0.33) (-1.66, -0.36)

2003 -15.44 (0.31) (-16.15, -14.90) 1.44 (1.39) (-1.92, 3.54) -0.87 (0.35) (-1.66, -0.29)

2004 -14.43 (0.20) (-14.88, -14.08) -2.59 (1.64) (-6.62, -0.18) -1.02 (0.24) (-1.54, -0.61)

2005 -14.39 (0.17) (-14.73, -14.08) 0.54 (1.05) (-1.89, 2.52) -0.20 (0.16) (-0.55, 0.10)

2006 -14.45 (0.17) (-14.81, -14.12) -4.24 (3.20) (-12.49, 0.06) -0.41 (0.19) (-0.82, -0.07)

2007 -14.63 (0.21) (-15.08, -14.27) 1.18 (0.63) (-0.26, 2.23) -0.99 (0.24) (-1.50, -0.57)
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Table 2: Posterior median (standard deviation) and 95% symmetric credible
interval (CI) for each parameter in the integrated analysis.

Posterior
median (SD) 95% CI

θ1 -14.94 (0.20) (-15.32, -14.53)

σ2 0.27 (0.42) (0.09, 1.06)

δ -0.65 (0.09) (-0.82, -0.49)

θ2 0.46 (0.39) (-0.35, 1.18)

Random effects - φ1,t

Posterior
Year median (SD) 95% CI

1999 -0.49 (0.27) (-1.06, -0.01)

2000 -0.40 (0.26) (-0.97, 0.08)

2001 -0.44 (0.28) (-1.03, 0.06)

2002 -0.14 (0.25) (-0.67, 0.35)

2003 -0.25 (0.25) (-0.76, 0.23)

2004 0.55 (0.23) (0.10, 1.00)

2005 0.38 (0.23) (-0.07, 0.83)

2006 0.26 (0.23) (-0.20, 0.73)

2007 0.52 (0.23) (0.08, 0.98)
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