80 research outputs found

    Radiocarbon Dating Caribou Antler and Bone : Are They Different?

    Get PDF
    Old archaeological radiocarbon dating lore has it that caribou antler and bone give different dating results, and that for some fundamental reason antler is unreliable as a dating material. We tested this idea by measuring radiocarbon concentrations in the bone and antler of two caribou (one recent, one ancient) for which the antler was still attached to the cranium. No significant differences were found. Thus, it seems that this old myth is groundless.Selon de vieux dires, la radiodatation archéologique des bois et des os du renne donnerait des résultats différents et, pour une raison fondamentale, les bois ne représenteraient pas un matériau fiable pour la radiodatation. On a testé cette idée en mesurant les concentrations de radiocarbone dans les os et les bois de deux rennes (l'un mort récemment, l'autre il y a longtemps), où les bois étaient encore rattachés au crâne. On n'a pas trouvé de différence notable, ce qui semblerait signifier que l'ancien mythe est sans fondement

    Off-axis effects on the multipulse structure of sperm whale usual clicks with implications for sound production

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 118 (2005): 3337-3345, doi:10.1121/1.2082707.Sperm whales (Physeter macrocephalus) produce multipulsed clicks with their hypertrophied nasal complex. The currently accepted view of the sound generation process is based on the click structure measured directly in front of, or behind, the whale where regular interpulse intervals (IPIs) are found between successive pulses in the click. Most sperm whales, however, are recorded with the whale in an unknown orientation with respect to the hydrophone where the multipulse structure and the IPI do not conform to a regular pulse pattern. By combining far-field recordings of usual clicks with acoustic and orientation information measured by a tag on the clicking whale, we analyzed clicks from known aspects to the whale. We show that a geometric model based on the bent horn theory for sound production can explain the varying off-axis multipulse structure. Some of the sound energy that is reflected off the frontal sac radiates directly into the water creating an intermediate pulse p1/2 seen in off-axis recordings. The powerful p1 sonar pulse exits the front of the junk as predicted by the bent-horn model, showing that the junk of the sperm whale nasal complex is both anatomically and functionally homologous to the melon of smaller toothed whales.This work was funded by grants to from the Office of Naval Research Grant Nos. N00014-99-1-0819 and No. N00014-01-1-0705, and the Packard Foundation

    Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1473-1485, doi:10.1121/1.1828501.The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 µPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks >20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 µPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 µPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 µPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives.This work was funded by grants from the Office of Naval Research Grants N00014-99-1-0819 and N00014-01-1-0705, and the Packard Foundation

    Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    Get PDF
    Funding: U.S. Office of Naval Research (ONR Grant No. N00014-14-1-0409); P.L.T. acknowledges funding received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (Grant No. HR09011) and contributing institutions.Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected—the “effective detection area” (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.Publisher PDFPeer reviewe

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    High source levels and small active space of high-pitched song in bowhead whales (Balaena mysticetus)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Public Library of Science, doi:10.1371/journal.pone.0052072.The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.This work was funded by the Oticon Foundation (grant # 08-3469 to Arctic Station, OT). OT and MC were additionally funded by AP Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal, MS by a PhD scholarship from the Oticon Foundation, FHJ by a Danish Council for Independent Research, Natural Sciences post-doctoral grant, SEP by a grant from the U.S. Office of Naval Research, and PTM by frame grants from the Danish Natural Science Research Council
    corecore