4,516 research outputs found

    A scanning force microscopy study on the morphology of elastomer-coagent blends

    Get PDF
    Atomic force scanning microscopy (AFM) was used to investigate the dispersion of low molecular weight compounds in ethylene-propylene copolymers (EPM). Where other microscopical techniques failed to provide morphological details of this type of blend, as a result of the restricted resolution (light microscopy) or the volatility of the low molecular weight component (SEM), the AFM technique provided surface images, which show inclusions in the matrix of the uncrosslinked polymers

    Uncertainties In Direct Neutron Capture Calculations Due To Nuclear Structure Models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. For spherical nuclei close to the dripline the statistical model (Hauser-Feshbach) approach is not applicable and direct contributions may dominate the cross sections. For neutron-rich, even-even Sn targets, we compare the resulting neutron capture cross sections when consistently taking the input for the direct capture calculations from three different microscopic models. The results underline the sensitivity of cross sections calculated in the direct model to nuclear structure models which can lead to high uncertainties when lacking experimental information.Comment: 4 pages, using espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. A postscript version can also be obtained from http://quasar.physik.unibas.ch/research.htm

    Dependence of direct neutron capture on nuclear-structure models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes 124−145^{124-145}Sn and 208−238^{208-238}Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orders of magnitude. This may also lead to differences in the predicted astrophysical r-process paths. Astrophysical implications are discussed.Comment: 25 pages including 12 figures, RevTeX, to appear in Phys. Rev.

    The effects of donepezil in Alzheimer's disease - Results from a multinational trial

    Get PDF
    Donepezil has been shown to be well tolerated and to improve cognition and global function in patients with mild to moderately severe Alzheimer's disease (AD). The current trial was undertaken to investigate further the efficacy and safety of donepezil, in a multinational setting, in patients with mild to moderately severe AD. This 30-week, placebo-controlled, parallel-group study consisted of a 24-week, double-blind treatment phase followed by a 6-week, single-blind, placebo washout. Eight hundred and eighteen patients with mild to moderately severe AD were randomly allocated to treatment with single, daily doses of 5 or 10 mg donepezil, or placebo. The two primary efficacy measures were: a cognitive performance test, the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and a global evaluation, the Clinician's Interview-Based Impression of Change with caregiver input (CIBIC plus). Secondary outcome measures included the Sum of the Boxes of the Clinical Dementia Rating Scale (CDR-SB), a modified Interview for Deterioration in Daily living activities in Dementia (IDDD) and a patient-rated quality of life assessment. Statistically significant improvements in cognitive and global function were observed, as evaluated by ADAS-cog and CIBIC plus, respectively, in both the 5 and 10 mg/day donepezil groups, compared with placebo. Treatment-associated changes were also observed in functional skills, as shown by improved scores on the CDR-SB and the complex-tasks component of the IDDD. A dose-response effect was evident, with the 10 mg/day donepezil group demonstrating greater benefits in all outcome measures than the 5 mg/day group. Donepezil was well tolerated by this patient population and did not produce any clinically significant laboratory test abnormalities. The results of this study confirm that donepezil is effective and well tolerated in treating the symptoms of mild to moderately severe AD

    The contrasting fission potential-energy structure of actinides and mercury isotopes

    Full text link
    Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number AA in the range 228⋦A⋦258228 \lnsim A \lnsim 258 and proton number ZZ in the range 90⋦Z⋦10090\lnsim Z \lnsim 100. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of 180^{180}Hg following electron capture on 180^{180}Tl is asymmetric. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range 178^{178}Hg--200^{200}Hg, to investigate the similarities and differences of actinide compared to mercury potential surfaces and to what extent fission-fragment properties, in particular shell structure, relate to the structure of the static potential-energy surfaces. Potential-energy surfaces are calculated in the macroscopic-microscopic approach as functions of fiveshape coordinates for more than five million shapes. The structure of the surfaces are investigated by use of an immersion technique. We determine properties of minima, saddle points, valleys, and ridges between valleys in the 5D shape-coordinate space. Along the mercury isotope chain the barrier heights and the ridge heights and persistence with elongation vary significantly and show no obvious connection to possible fragment shell structure, in contrast to the actinide region, where there is a deep asymmetric valley extending from the saddle point to scission. The mechanism of asymmetric fission must be very different in the lighter proton-rich mercury isotopes compared to the actinide region and is apparently unrelated to fragment shell structure. Isotopes lighter than 192^{192}Hg have the saddle point blocked from a deep symmetric valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes, for which we would expect a qualitatively different asymmetry of the fragments.Comment: 8 pages, 9 figure

    Solution of the Nuclear Shell Model by Symmetry-Dictated Truncation

    Full text link
    The dynamical symmetries of the Fermion Dynamical Symmetry Model are used as a principle of truncation for the spherical shell model. Utilizing the usual principle of energy-dictated truncation to select a valence space, and symmetry-dictated truncation to select a collective subspace of that valence space, we are able to reduce the full shell model space to one of manageable dimensions with modern supercomputers, even for the heaviest nuclei. The resulting shell model then consists of diagonalizing an effective Hamiltonian within the restricted subspace. This theory is not confined to any symmetry limits, and represents a full solution of the original shell model if the appropriate effective interaction of the truncated space can be determined. As a first step in constructing that interaction, we present an empirical determination of its matrix elements for the collective subspace with no broken pairs in a representative set of nuclei with 130≤A≤250130\le A \le 250. We demonstrate that this effective interaction can be parameterized in terms of a few quantities varying slowly with particle number, and is capable of describing a broad range of low-energy observables for these nuclei. Finally we give a brief discussion of extending these methods to include a single broken collective pair.Comment: invited paper for J. Phys. G, 57 pages, Latex, 18 figures a macro are available under request at [email protected]

    Differential algebras on kappa-Minkowski space and action of the Lorentz algebra

    Full text link
    We propose two families of differential algebras of classical dimension on kappa-Minkowski space. The algebras are constructed using realizations of the generators as formal power series in a Weyl super-algebra. We also propose a novel realization of the Lorentz algebra so(1,n-1) in terms of Grassmann-type variables. Using this realization we construct an action of so(1,n-1) on the two families of algebras. Restriction of the action to kappa-Minkowski space is covariant. In contrast to the standard approach the action is not Lorentz covariant except on constant one-forms, but it does not require an extra cotangent direction.Comment: 16 page
    • …
    corecore