37 research outputs found

    Switching first contact: photocontrol of E. coli adhesion to human cells

    Get PDF
    We have shown previously that carbohydrate-specific bacterial adhesion to a non-physiological surface can be photocontrolled by reversible E/Z isomerisation using azobenzene-functionalised sugars. Here, this approach is applied to the surface of human cells. We show not only that bacterial adhesion to the azobenzene glycoside-modified cell surface is higher in the E than in the Z state, but add data about the specific modulation of the effect

    Accurate phase retrieval of complex point spread functions with deep residual neural networks

    Full text link
    Phase retrieval, i.e. the reconstruction of phase information from intensity information, is a central problem in many optical systems. Here, we demonstrate that a deep residual neural net is able to quickly and accurately perform this task for arbitrary point spread functions (PSFs) formed by Zernike-type phase modulations. Five slices of the 3D PSF at different focal positions within a two micron range around the focus are sufficient to retrieve the first six orders of Zernike coefficients.Comment: 8 pages, 4 figure

    Review

    No full text

    Switching first contact: photocontrol of E. coli adhesion to human cells

    Get PDF
    We have shown previously that carbohydrate-specific bacterial adhesion to a non-physiological surface can be photocontrolled by reversible E/Z isomerisation using azobenzene-functionalised sugars. Here, this approach is applied to the surface of human cells. We show not only that bacterial adhesion to the azobenzene glycoside-modified cell surface is higher in the E than in the Z state, but add data about the specific modulation of the effect

    Inside Cover: Microdomain Formation Controls Spatiotemporal Dynamics of Cell‐Surface Glycoproteins (ChemBioChem 14/2015)

    No full text
    The inside cover picture shows a metaphoric representation of the key idea of our paper. We tagged membrane glycoproteins by metabolic labeling, interconnected them in a physiological or artificial way, and employed high-resolution fluorescence microscopy to investigate the effects of this network formation on the spatiotemporal dynamics of the interconnected membrane glycoproteins. More details can be found in the Full Paper by T. K. Lindhorst, C. BrÀuchle et al. on page 2023 in Issue 14, 2015. (DOI: 10.1002/cbic.201500361)

    Microdomain Formation Controls Spatiotemporal Dynamics of Cell-Surface Glycoproteins

    No full text
    The effect of galectin-mediated microdomain formation on the spatiotemporal dynamics of glycosylated membrane proteins in human microvascular endothelial cells (HMEC-1) was studied qualitatively and quantitatively by high-resolution fluorescence microscopy and artificially mimicked by metabolic glycoprotein engineering. Two types of membrane proteins, sialic acid-bearing proteins (SABPs) and mucin-type proteins (MTPs), were investigated. For visualization they were metabolically labeled with azido sugars and then coupled to a cyclooctyne-conjugated fluorescent dye by click chemistry. Both spatial (diffusion) and temporal (residence time) dynamics of SABPs and MTPs on the membrane were investigated after treatment with exogenous galectin-1 or -3. Strong effects of galectin-mediated lattice formation were observed for MTPs (decreased spatial mobility), but not for SABPs. Lattice formation also strongly decreased the turnover of MTPs (increased residence time on the cell membrane). The effects of galectin-mediated crosslinking was accurately mimicked by streptavidin-mediated crosslinking of biotin-tagged glycoproteins and verified by single-molecule tracking. This technique allows the induction of crosslinking of membrane proteins under precisely controlled conditions, thereby influencing membrane residence time and the spatial dynamics of glycans on the cell membrane in a controlled way

    Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx

    No full text
    The mammalian glycocalyx is a heavily glycosylated extramembrane compartment found on nearly every cell. Despite its relevance in both health and disease, studies of the glycocalyx remain hampered by a paucity of methods to spatially classify its components. We combine metabolic labeling, bioorthogonal chemistry, and super-resolution localization microscopy to image two constituents of cell-surface glycans, N-acetylgalactosamine (GalNAc) and sialic acid, with 10-20 nm precision in 2D and 3D. This approach enables two measurements: glycocalyx height and the distribution of individual sugars distal from the membrane. These measurements show that the glycocalyx exhibits nanoscale organization on both cell lines and primary human tumor cells. Additionally, we observe enhanced glycocalyx height in response to epithelial-to-mesenchymal transition and to oncogenic KRAS activation. In the latter case, we trace increased height to an effector gene, GALNT7. These data highlight the power of advanced imaging methods to provide molecular and functional insights into glycocalyx biology
    corecore