90 research outputs found

    Local waiting time fluctuations along a randomly pinned crack front

    Full text link
    The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas block is followed using a high resolution fast camera. We show that the fracture front dynamics is governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize the intermittent dynamics observed, i.e. the local pinnings and depinnings of the crack front which trigger a rich burst activity, by measuring the local waiting time fluctuations along the crack front during its propagation. The local front line velocity distribution deduced from the waiting time analysis exhibits a power law behavior, P(v)vηP(v) \propto v^{-\eta} with η=2.55±0.15\eta = 2.55 \pm 0.15, for velocities vv larger than the average front speed . The burst size distribution is also a power law, P(S)SγP(S)\propto S^{-\gamma} with γ=1.7±0.1\gamma=1.7 \pm 0.1. Above a characteristic length scale of disorder Ld15μmL_d \sim 15 \mu m, the avalanche clusters become anisotropic, and the scaling of the anisotropy ratio provides an estimate of the roughness exponent of the crack front line, H=0.66H=0.66, in close agreement with previous independent estimates.Comment: Phys. Rev. Lett., accepte

    Direct velocity measurement of a turbulent shear flow in a planar Couette cell

    Full text link
    In a plane Couette cell a thin fluid layer consisting of water is sheared between a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cells flow channel is large compared to the film separation. To extract the flow velocity in the experiments a correlation image velocimetry (CIV) method is used on pictures recorded with a high speed camera. The flow is recorded at a resolution that allows to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent pattern that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven with the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction which is the direction the band is moving. Although the flow states are metastable they possess similarities to the steady Taylor vortices known to appear in circular Taylor Couette cells

    Local dynamics of a randomly pinned crack front during creep and forced propagation: An experimental study

    Get PDF
    We have studied the propagation of a crack front along the heterogeneous weak plane of a transparent poly(methyl methacrylate) (PMMA) block using two different loading conditions: imposed constant velocity and creep relaxation. We have focused on the intermittent local dynamics of the fracture front for a wide range of average crack front propagation velocities spanning over four decades. We computed the local velocity fluctuations along the fracture front. Two regimes are emphasized: a depinning regime of high velocity clusters defined as avalanches and a pinning regime of very low-velocity creeping lines. The scaling properties of the avalanches and pinning lines (size and spatial extent) are found to be independent of the loading conditions and of the average crack front velocity. The distribution of local fluctuations of the crack front velocity are related to the observed avalanche size distribution. Space-time correlations of the local velocities show a simple diffusion growth behavior.Comment: Physical Review E (2011); 62.20.mt, 46.50.+a, 68.35.C

    Dynamic aerofracture of dense granular packings

    Get PDF
    International audienceA transition in hydraulically induced granular displacement patterns is studied by means of discrete numerical molecular dynamics simulations. During this transition the patterns change from fractures and fingers to finely dispersed bubbles. The dynamics of the displacement patterns are studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional granular layer. At one side of the cell the pressure of the compressible interstitial gas is increased. At the opposite side from the inlet of the cell a semipermeable boundary is located. This boundary is only permeable towards the gas phase while preventing grains from leaving the cell. The imposed pressure gradient compacts the grains. In the process we can identify and describe a mechanism that controls the transition of the emerging displacement patterns from fractures and fingers to finely dispersed bubbles as a function of the interstitial gas's properties and the characteristics of the granular phase

    The non-Gaussian nature of fracture and the survival of fat-tail exponents

    Get PDF
    4 pagesInternational audienceWe study the fluctuations of the global velocity Vl(t), computed at various length scales l, during the intermittent Mode-I propagation of a crack front. The statistics converge to a non-Gaussian distribution, with an asymmetric shape and a fat tail. This breakdown of the Central Limit Theorem (CLT), is due to the diverging variance of the underlying local crack front velocity distribution, displaying a power law tail. Indeed, by the application of a generalized CLT, the full shape of our experimental velocity distribution at large scale is shown to follow the stable Levy distribution, which preserves the power law tail exponent under upscaling. This study aims to demonstrate in general for Crackling Noise systems, how one can infer the complete scale dependence of the activity- and extreme event distributions, by measuring only at a global scale

    Numerical approach to frictional fingers

    Get PDF
    Experiments on confined multiphase flow systems, involving air and a dense suspension, have revealed a diverse set of flow morphologies. As the air displaces the suspension, the beads that make up the suspension can accumulate along the interface. The dynamics can generate “frictional fingers” of air coated by densely packed grains. We present here a simplified model for the dynamics together with a new numerical strategy for simulating the frictional finger behavior. We further make theoretical predictions for the characteristic width associated with the frictional fingers, based on the yield stress criterion, and compare these to experimental results. The agreement between theory and experiments validates our model and allows us to estimate the unknown parameter in the yield stress criterion, which we use in the simulations

    Family-Vicsek scaling of detachment fronts in Granular Rayleigh Taylor Instabilities during sedimenting granular/fluid flows

    Get PDF
    When submillimetric particles are confined in a fluid such that a compact cluster of particles lie above the clear fluid, particles will detach from the lower boundary of the cluster and form an unstable separation front giving rise to growing fingers of falling particles. We study this problem using both experiments and hybrid granular/fluid mechanics models. In the case of particles from 50 to 500 microns in diameter falling in air, we study the horizontal density fluctuations at early times: the amplitude of the density difference between two points at a certain horizontal distance grows as a power law of time. This happens up to a saturation corresponding to a power law of the distance. The way in which the correlation length builds up to this saturation also follows a power law of time. We show that these decompaction fronts in sedimentation problems follow a Family-Vicsek scaling, characterize the dynamic and Hurst exponent of the lateral density fluctuations, respectively z \sim 1 and \zeta \sim 0.75, and show how the prefactors depend on the grain diameter. We also show from similar simulations with a more viscous and incompressible fluid, that this feature is independent of the fluid compressibility or viscosity, ranging from air to water/glycerol mixtures

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    Pattern formation of frictional fingers in a gravitational potential

    Get PDF
    Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liquid-granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment of the finger structures is observed as the tilting angle and the granular density are varied. An analytical model is presented, demonstrating that the alignment properties are the result of the competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is reproduced in simulations. We also show how the system explains patterns observed in nature, created during the early stages of a dike formation
    corecore