12 research outputs found

    Mixing of a granular layer falling through a fluid

    Get PDF
    We analyze the granular Rayleigh-Taylor instability of densely packed grains immersed in a compressible or an incompressible fluid using numerical simulations and two types of experiments. The simulations are based on a two-dimensional (2D) molecular dynamics model and the experiments have been carried out in systems of grains immersed in water/glycerol (incompressible fluid) and in air (compressible fluid). The variation of the interstitial fluid is shown to generate different dynamical patterns and mixing properties of the granular systems. The results have been quantified using 2D autocorrelation functions, the power spectrum of the velocity field and velocity field histograms. Excellent agreement is found between the numerical simulations and the experiments. © 2010 The American Physical Society

    Numerical studies of aerofractures in porous media

    Get PDF
    During the hydraulically induced compaction of a granular layer fracture patterns arise. In numerical simulations we study how these patterns depend on the gas properties as well as on the properties of the porous medium. In particular the relation between the speed of fracture propagation and injection pressure is here studied in detail

    Coupled air/granular flow in a linear Hele-Shaw cell

    Get PDF
    We investigate experimentally the pattern formation process during injection of air in a noncohesive granular material confined in a linear Hele-Shaw cell. We characterize the features and dynamics of this pattern formation on the basis of fast image analysis and sensitive pressure measurements. Behaviors are classified using two parameters-injection pressure and plate opening-and four hydrodynamic regimes are defined. For some regions of the parameter space, flows of air and grains are shown to be strongly coupled and instable, and lead to channelization within the granular material with obvious large-scale permeability variations. © 2008 The American Physical Society

    Steady-state two-phase flow in porous media: statistics and transport properties.

    Get PDF
    We study experimentally the case of steady-state simultaneous two-phase flow in a quasi-two-dimensional porous media. The dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution as well as the relation |nablaP| proportional, sqrt[Ca] between the pressure gradient in the system and the capillary number

    Downscaling of fracture energy during brittle creep experiments

    Get PDF
    We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large-scale response of slow-propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high-resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high-resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics. Copyright © 2011 by the American Geophysical Union

    Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium.

    Get PDF
    We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions

    Influence of Viscous Fingering on Dynamic Saturation–Pressure Curves in Porous Media

    Get PDF
    We report on results from primary drainage experiments on quasi-two-dimensional porous models. The models are transparent, allowing the displacement process and structure to be monitored in space and time during primary drainage experiments carried out at various speeds. By combining detailed information on the displacement structure with global measurements of pressure, saturation and the capillary number Ca, we obtain a scaling relation relating pressure, saturation, system size and capillary number. This scaling relation allows pressure-saturation curves for a wide range of capillary numbers to be collapsed on the same master curve. We also show that in the case of primary drainage, the dynamic effect in the capillary pressure-saturation relationship observed on partially water saturated soil samples might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase, and pressure changes caused by viscous effects in the wetting fluid phase. © 2010 The Author(s)

    Effects of Pressure Oscillations on Drainage in an Elastic Porous Medium

    Get PDF
    The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non- wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. © 2010 Springer Science+Business Media B.V

    Simulating temporal evolution of pressure in two-phase flow in porous media

    Get PDF
    We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip

    Viscous stabilization of 2D drainage displacements with trapping

    Full text link
    We investigate the stabilization mechanisms due to viscous forces in the invasion front during drainage displacement in two-dimensional porous media using a network simulator. We find that in horizontal displacement the capillary pressure difference between two different points along the front varies almost linearly as function of height separation in the direction of the displacement. The numerical result supports arguments taking into account the loopless displacement pattern where nonwetting fluid flow in separate strands (paths). As a consequence, we show that existing theories developed for viscous stabilization, are not compatible with drainage when loopless strands dominate the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev. Let
    corecore