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Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium

Olivier Lengliné, Renaud Toussaint, and Jean Schmittbuhl
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We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous
quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material
(polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the
energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent
thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading
conditions.
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I. INTRODUCTION

The mechanisms responsible for the onset and evolution
of fracture propagation are of central importance for the
assessment of failures in man-made structures and natural
materials such as rocks, sea ice, and wood [1–4]. In the general
context of fracture mechanics, several regimes of behavior
are often reported. According to the Griffith energy balance
concept, in a quasistatic regime, the energy release rate G is
roughly constant and equal to a material-dependent critical
energy release rate, G ∼ Ggr [5]. Ggr is the free energy per
unit surface area associated with the creation of new crack
surfaces. The kinetic energy becomes important in unstable
configurations or during fast loading leading to a dynamic
regime [6,7]. In the slow, unstable regime (i.e., rupture
velocity smaller than the Rayleigh wave speed), the crack
propagation speed is roughly proportional to the difference
between G and Ggr (e.g., [8]) and strongly controlled by
loading conditions (imposed stress or imposed displacement,
loading rate) and material rheology. Modeling approaches in
these cases are typically based on the linear elastic fracture
mechanics (LEFM) approximation [9].

A generalization of the Griffith concept of fracturing, in the
framework of irreversible processes, allows for the propagation
of fractures at speeds below that of the Rayleigh wave for
energy release rate lower than Ggr [10]. In consequence
the slow kinetic crack propagation is usually referred to as
subcritical crack growth or the subcritical regime. Statistical
physics models suggest that this subcritical regime is governed
by a thermally activated mechanism where the strain rate often
obeys an Arrhenius law, i.e., corresponds to a Boltzmannian of
the gap to a critical energy level Gc − G [5,11,12]. The crack
growth is directly influenced by environmental factors (applied
stress, temperature, chemical concentrations) affecting the free
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energy, and thus the energy barrier, via numerous competing
mechanisms like stress corrosion, diffusion, dissolution, and
plasticity [1,5]. Several experimental empirical relations have
been reported that divide slow crack propagation into three
main characteristic regimes depending on the crack speed [13].
These regimes reflect the competition between crack growth
velocity and diffusion of species at the crack tip. At very slow
velocity, external variables are dominant and an increase in G

results in an increase in the speed of crack growth. A weak
stress-sensitive regime follows where transport is limited. At
higher stress, the crack growth kinetics becomes similar to that
in the case with no environmental effects.

Other relations besides the Arrhenius law have also been
reported to describe slow crack growth. These relations are
generally inferred from fitting an empirical relation to experi-
mental data on a G-v̄ diagram, where v̄ is the crack velocity.
Such relations involve power laws with small exponents [14],
or large exponents when the crack propagation is more
sensitive to chemical reaction rates [15,16]. To simplify the
relationship between strain rate (i.e., crack-front advance) and
stress, some models consider the crack propagation speed
as roughly proportional to the difference between G and
an energy release rate threshold, or to a power law of this
difference, i.e., a Paris law (e.g., [17–19]).

The Arrhenius form of the kinetic fracture evolution is
appealing as it has a certain universality associated with
statistical mechanics. It is related to any thermally activated
mechanism at the molecular scale and can be derived from
first principles as the theory of process rates [5]. Such a
relation is also supported by experimental data [1,20], and if the
dependence of the free energy G on the strain can be adequately
linearized, a logarithmic time dependence of the strain, and
force, can be derived. This is observed for many systems under
creep like granular systems displaying a temporal logarithmic
deformation (or force) during slow relaxation [21–23].

For heterogeneous materials, crack propagation is, how-
ever, influenced by local variations of the material properties,
microstructures, thermal fluctuations, and the development of

036104-11539-3755/2011/84(3)/036104(13) ©2011 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by univOAK

https://core.ac.uk/display/249986299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.84.036104
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a process zone [24]. The interplay of the different contributions
to the crack growth makes its analysis a complex problem. It
is indeed difficult to discriminate the part of each contribution
by observing the evolution of a crack advance at a microscopic
level. The failure of brittle materials with weak flaws is
typically described by Weibull statistics of the flaw strengths
which relies on the weakest-link approach and extreme-value
statistics [25]. Quasibrittle materials exhibit a departure from
the Weibull statistics for which ductile behavior around the
crack tip imposes an representative elementary volume (REV)
of non-negligible size compared to the sample size. These
materials show significant scaling or size effects, in particular
at very low loading rates [26].

The interfacial crack propagation configuration has long
been a favorable experimental setting for fine monitoring of
crack propagation. It consists of a single cantilever beam
configuration with fracture propagation along a weak interface.
It was the first setup to enable measurements of fracture energy
in brittle materials like mica [27]. In the case of quasibrittle ma-
terials [e.g., polymethylmethacrylate) (PMMA)], it provided
the first detailed observation of the morphology of the crack
front [28,29]. The distribution of local velocities of the crack
front displays an intermittent behavior at small scales [30,31].
The scaling properties of the crack front remain unchanged in
both the high and slow speed limits at the local dynamic [31].
This suggests that a common mechanism might be operating
in these two regimes. This was the case for both the front’s
geometrical properties (scaling of the front roughness) and the
time and space scaling properties of the velocity fluctuations.
The interfacial configuration is also favorable for numerical
simulations since it reduces the roughening of the crack front
to an in-plane problem. Two modeling approaches have been
proposed: (1) a microscopic description of the crack front
as a continuous line [8,32–34] and (2) fiber bundle models in
which a discrete population of active sites are competing under
various interaction rules [35–39].

Here, we focus on the experimental description of the
spatially averaged velocity of the crack front in the interfacial
fracture configuration, under various loading conditions. Our
heterogeneous medium consists of an interface between two
PMMA plates with small toughness fluctuations [40]. Each
local asperity is a site of a depinning transition that leads to
a progressive local advance of the crack front. We optically
monitor the global evolution of the crack by taking advantage
of the transparency of our sample. We explore the regimes
of small loading rates (up to 1 mm/s) and relaxation at fixed
load point displacement. First, we compare the average crack
velocity to the loading velocity or the energy release rate
for both loading regimes. Then we show that the large-scale
evolution of the crack-front velocity can be explained by
a simple model of a population of statistically independent
but temperature-sensitive microscopic active sites, slowly
evolving, following an Arrhenius law. Numerical solutions
of the model correctly describe the experimental behaviors for
time scales spanning over six orders of magnitude for both
loading types. The parameters of the subcritical crack-growth
law provide a characteristic size of the individual breaking
bond. For our case, we obtain a length scale of 10−11 m for
PMMA comparable to the separation of individual molecular
elements and much smaller than the scaling of the fracture

front (10−5 to 10−2 m) similar to the scales determined for
granite [41], paper [42], and numerous other materials [12].

In addition to the numerical solutions, we derive simple
analytical expressions for the two loading regimes under
several approximations. Notably, we find a slow time-
logarithmic relaxation. We also show that G ∼ Ggr , for
imposed loading rates, results from an Arrhenius law with
stress-activated microscopic sites and linear elasticity that
describe the dependence of the stress on the large-scale
geometry.

II. EXPERIMENTAL ANALYSIS

A. Sample preparation

We use two PMMA plates of dimensions 20 × 10 ×
1.0 cm3and 23 × 2.7× cm3. First, we sandblast one surface
of the narrower plate with glass beads of diameter φ (φ ∈
[180–300] μm). The blasted plate is cleaned to remove any
electrically attached glass beads. Then, we assemble the two
plates in a stiff aluminum frame with the blasted surface
facing a surface of the larger plate. Finally, we subject the
assembled plates to a homogeneous normal load of 3 MPa
and heat the assembly in an oven at 190 ◦C for 45 min to
anneal the plates. The thermal annealing produces a cohesive
interface that is weaker than the bulk and constrains the sample
to break along the prescribed interface. The glass bead blasting
introduces random heterogeneities in the surface topography
that provides surface roughness and controls the local strength
at the interface. The induced microstructure at the interface
makes the sample opaque. However, the newly formed block,
after annealing, recovers its transparency since contrast of the
refractive index along the interface disappears.

B. Acquisition and image processing

We clamp the large plate of the fully healed sample to a
stiff aluminum frame. A stepping motor applies the loading to
the tip of the narrow plate normal to the plate surface (Fig. 1).
The contact on the plate is imposed by a freely rotating rod
(using ball bearings), made of low-friction-coefficient material
(polyamide PA 6.6). We measure the vertical displacement at
the loading point using a linear variable differential trans-
former (LVDT) and the force load by an STC 1205 traction-
compression transducer. Displacement and force are measured
to a resolution of 1.3 μm and 2.4 × 10−3 N, respectively.
The vertical displacement imposed on the narrower sample
induces the stable propagation of a planar fracture along
the prescribed interface. The loading velocity varies for each
experiment within the range [6–600] μm/s and is zero during
creep tests. This leads to null front velocities at the start of
experiments and maximum front velocities on the order of
3.0 × 103 μm/s. The total advance of the crack front achieved
during an experiment is typically on the order of 1.0 cm.

We monitor the fracture front optically using a Nikon D700
camera with up to ∼5 frames per second to follow the crack
front propagation (Fig. 1). The optical images are 4256 × 2832
pixels and of a resolution in the range [5–10] μm/pixel.
The optical images of the interfacial rupture are divided into
bright and dark regions representing the cracked open and
unbroken sections of the sample respectively. To obtain the
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FIG. 1. Side view (top) and top view (bottom) of the experimental
setup. A stiff aluminum frame is attached to the upper PMMA plate.
The lower plate is separated from the upper one by a load F applied
by a rod connected to a stepping motor. The rod can freely rotate
around its axis. The load causes a deflection u of the bottom plate
and the propagation of an interfacial crack. The crack front is located
at the average distance ā from the free end (ā is obtained as the
spatial average of the distance a along the front). Front advance is
monitored by a camera set in vertical position, perpendicular to the
crack plane. We add glycerol between the upper plate and a thin glass
sheet located above the crack front to enhance the optical contrast
of the pictures. The narrow plate thickness and width are denoted h1

and b, respectively, while the large plate thickness is denoted h2.

transition between the bright and dark regions that represents
the fracture front, we first compute the difference of the
grayscale maps between each image and the first image of the
experiment. This first step highlights the difference between
two consecutive time stamps of the fracture process while
removing permanent artifacts associated with index variations
in the material. Then, we transform the grayscale images to
black and white according to a threshold that represents the
gray level separation between the bright and dark regions. The
fracture front a(x,t) is the largest cluster of connected pixels

with nonzero gradient. The front propagates on average along
the y axis where the origin is defined at the free end of the
plate and is positive in the direction of propagation. The x axis
is perpendicular to the y axis and defines the coordinate of a
point along the front, t is time, and a(x,t) is the y position
of the front at lateral position x and time t . We compute the
average front position ā(t) from each profile a(x,t) [30,40].

C. Typical run of an experiment

All experiments start with no initial deflection, i.e., the
loading point is not in contact with the narrow PMMA plate.
Then the stepping motor moves the loading point at controlled
speed Vl . Once contact is achieved between the loading point
and the plate, both the force F at the free end of the plate
and the deflection u increase. The force increase leads to the
initiation of crack movement while the loading point continues
to move at constant velocity. The duration of this constant-
loading-velocity regime is inversely proportional to Vl . The
fracture front speed decreases once we stop the stepping motor
(Vl = 0, at t = tstop). We typically monitor the evolution of the
fracture fronts for about 5 min. Monitoring lasted for more
than 18 h for one of our experiments. We unload the sample
by moving the loading point backward to its initial position,
leading to the arrest of the front. The next experiment starts
where the previous one ends until the front reaches the end of
the plate. We performed all experiments at room temperature
(T ∈ [22.2–24.4] ◦C) and used two completely independent
experimental setups run by different groups, with no noticeable
discrepancies in the results.

An example of typical experimental measurements is shown
in Fig. 2. Here, the sample was continuously loaded at 62 μm/s
during 230 s. Rupture initiates at t ∼ 190 s, as evidenced by the
onset of the front movement and the deviation of the force from
the linear trend. We observe an increase in the crack velocity as
long as the sample is continuously loaded. We then maintain
the loading point at a fixed position at time tstop = 230 s as
indicated by the vertical gray line (Fig. 2). The front velocity
exhibits a deceleration while the force is decreasing when the
loading point velocity is set to zero. We performed all the
experiments following the same scheme presented in Fig. 2.

III. EXPERIMENTAL OBSERVATIONS

In the following subsections we report on the behavior of the
average front positions with time in the two loading regimes,
at constant loading velocity, or at constant loading position,
and show that they follow simple laws. In subsequent sections,
we derive these laws on a theoretical basis and interpret their
parameters in a physical context.

A. Constant loading velocity

In the constant-loading-velocity regime, we observe an
initiation phase which precedes the propagation of the crack
at an almost constant velocity (Fig. 2). The evolution of the
front position ā as a function of the loading point displacement
u is shown in Fig. 3. We only show data for t < tstop where
the dynamics of the crack is driven by the applied load at
constant velocity. We observe that the evolution of ā is well
approximated by a fit of the form ā(u) ∝ √

u (dashed lines in
Fig. 3) for each of our samples.
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FIG. 2. (Color online) Top: Variation of loading point position
u as a function of time during an experiment. At time t = 230 s, the
loading point is maintained in a fixed position. Middle: Variation of
the average front position ā as a function of time (black solid line)
and evolution of the crack front velocity dā/dt (gray solid line).
The red solid and short-dashed lines represent a fit to the average
front position and velocity, respectively, according to Eq. (19). The
blue long-dashed line is a fit to the crack velocity in the relaxation
regime following Eq. (26). Bottom: Variation of force as a function of
time (black solid line) and force predicted by the beam theory (gray
dashed line) using (5) with E = 3.2 GPa and b = 2.84 cm, which are
the measured properties of the plate. For all figures, the vertical gray
line denotes the time at which the loading was stopped and separates
the imposed velocity regime from the relaxation regime.

B. Constant-deflection condition

Now we turn to the relaxation regime characterized by a
constant deflection u (t > tstop). We observe a progressive
deceleration of the front (Fig. 2). In order to precisely describe
the evolution of the front position in this particular regime,
we set ā0 = ā(tstop) and we represent the evolution of the front
position ā(t) − ā0 for time since tstop. We observe a logarithmic
evolution of the front advance for large times (Fig. 4). We
propose to fit the advance of the front by a logarithmic relation
of the form

ā(t − tstop) − ā0 = A ln

(
t − tstop

t∗
+ 1

)
, (1)

where t∗ is a characteristic time and A an empirical constant.
Equation (1) provides a good fit (Fig. 4). We obtain typical
values of t∗ on the order of 1–10 s, while typical values
of A are on the order of 10−4–10−3 m. We also report the
evolution of the front position during this relaxation regime
for an experiment lasting more than 18 h (Fig. 4). The
propagation of the front remained small (∼2 cm) even for
this long-term experiment. The logarithmic evolution of the
crack front contrasts with the previous regime of constant
loading velocity. The large-scale progression of the front must
be dominated by a process capable of capturing such distinct
behaviors.
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FIG. 3. Variation of the crack front position ā as a function of
the loading point displacement u. The gray points refer to recorded
data from different samples. For each sample we carried out several
experiments. The best fit using ā(u) ∝ u1/2 is displayed as a dashed
line for each sample. Crack-front positions are shifted vertically
for each sample in order to enhance the visibility (by a prefactor
corresponding respectively to a factor 0.5 for the lowest and 2
for the highest curves). We see that for each sample and for each
experiment the observed behavior is in good agreement with the
fitted trend. Notice, however, that the crack initiation does not seem
well approximated by this trend.

IV. SUBCRITICAL CRACK PROPAGATION MODEL

A. Thermally activated microscopic process

We assume that the crack propagation is governed, at the
local scale, by a subcritical mechanism based on an Arrhenius
law [14]. Owing to thermal fluctuations large enough to
overcome the fracture energy barrier of individual bonds, the
fracture propagates at slow speed. This contrasts with the
Griffith approach where no propagation is allowed below the
Griffith energy release rate Ggr (or below the Griffith stress
intensity factor Kgr following an Irwin criterion [5]). The
fracture energy barrier fluctuates in space but it is constant
at a characteristic microscopic scale α, which is a length
scale associated with individual degrees of freedom of the
microscopic fracturing process. At zero loading, we consider
that the magnitude of the barrier is related to the local
critical energy release rate α2Gc. This aspect of a quenched
fluctuating zero-loading barrier relates material properties to
Gc. The energy gap is also dependent on the elastic mechanical
energy around the crack tip which is described by the local
energy release rate α2G. Such models of coupled thermal
noise and spatial disorder have been previously investigated
in some theoretical approaches of fiber bundle models and
irreversible crack growth [43,44]. The probability for an
individual asperity to go beyond the barrier �G = Gc − G

per period characteristic of the microscopic thermal motion
τB is the Boltzmannian of the relative elastic energy α2�G.
The Arrhenius relation governing the local fracture velocity
v = d a/dt can thus be written as

v(G,Gc) = ψ exp(−α2�G/kBT ), (2)
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FIG. 4. Evolution of the average front position ā(t) − ā0 during
several relaxation experiments as a function of time t − tstop. The
observed front position is represented by gray dots while the best
fits using (1) are displayed as continuous dark lines. Traces have
been shifted vertically in order to enhance visibility. The experiment
displayed on the top figure lasted more than 18 h (the time
representation scale is different from the one in the bottom figure).

where ψ is a constant of proportionality equal to α/τB , T is
the absolute temperature (in kelvin), and kB is the Boltzmann
constant.

B. Population of independent microscopic sites

We propose a model for the average crack velocity based
on a statistical approach. The behavior of the weak interface
is assumed to be dominated at large scales by a discrete
set of independent microscopic sites. We obtain the large-
scale evolution law of the crack-front speed by integrating
Eq. (2) over all local microscopic sites at a given time. Such
an integration is not straightforward as there might exist
correlations among local values of G and Gc. Fluctuations
in G results from the crack front roughening around its
average position ā [32] and a perpendicular, large-scale, stress
gradient due to bending of the loading plate. For the fracture
energy Gc, the quenched fluctuations result from the sample
preparation. Such fluctuations introduce correlation over a
finite length of local velocities [31]. We hypothesize that at
the macroscopic scale, above these correlation lengths, the
average (or large-scale) evolution of the front is governed by
a law similar to Eq. (2) but involving only large-scale average
quantities. Ḡ describes the average loading along the front and
Ḡc describes the upscaled energy barrier at the front scale.

The critical size of the degree of freedom, α, is preserved.
For example, in a simple model where all parameters were
statistically independent and G and Gc could be described by
two independent normal distributions with respective means
Ḡ and Ḡc and root mean squares σG and σGc

, we would get

v̄ = χ exp[−α2(Ḡc − Ḡ)/kBT ], (3)

where

χ = ψ exp

[
α4(σ 2

G + σ 2
Gc

)

2k2
BT 2

]

We acknowledge that, at small scales, G and Gc are
not statistically independent and that intermittent behavior,
large fluctuations of velocity, and spatial correlations in G

and in Gc have been observed and described in detail (e.g.,
[30,31]). Nonetheless, we assume that the upscaling leads to
a simple form as in Eq. (3). The upscaling could result from a
discretization scale above which asperities could be considered
independent. This discretization scale could be analogous to
the REV introduced by Baz̆ant and Pang [45] for quasibrittle
materials. Within each REV, the effective failure of the asperity
is considered as a purely thermally activated and stress-
dependent process. This model is not continuous in contrast to
the contact line approach [8,32–34]. It can rather be compared
to fiber bundle models [35–39] or interacting damage models
[46–49] but with a nondirect stress redistribution.

For simplicity, we ignore mechanical interactions among
microscopic sites in describing the dynamics of the upscaled
spatially averaged velocity. Only the mechanical energy
release rate, controlling the upscaled velocity, depends on
the large-scale average front position. The upscaling of Eq.
(2) leads to a similar form with only upscaled energy release
rates and energy barrier [Eq. (3)]. This assumption will be
checked by comparing this simple model to our experimental
observations. Below we show that the model holds for the
relaxation regime and also for the forced regime.

C. A cantilever configuration

We estimate the average energy release rate Ḡ using
classical elastic plate theory, neglecting fluctuations of the
front position around an average front position ā. The average
energy release rate from the elastic strain energy, UE , stored
in the loading plate is

Ḡ = −1

b

dUE

dā
, (4)

where b is the width of the plate [5]. The linear relation between
the applied force F and the deflection of the beam u from
one-dimensional (1D) beam theory is

F = uEbh3

4ā3
, (5)

where E is the Young modulus of the narrow plate and 1/h3 =
1/h3

1 + 1/h3
2 is an equivalent thickness resulting from our

asymmetric configuration (see [5] and details in the Appendix,
where we also estimate both mode I and mode II loading). This
leads to the following expression of the elastic energy:

UE = F
u

2
. (6)
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Combination of Eqs. (4), (5), and (6) gives an estimation of
the average energy release rate in our system,

Ḡ = 3u2Eh3

8ā4
. (7)

D. Macroscopic evolution law

We derive the expression for the evolution of the crack-front
velocity by combining Eqs. (3) and (7),

v̄ = dā

dt
= χ exp

(
α2

kBT

[
3u2Eh3

8ā4
− Ḡc

])
. (8)

Equation (8) is the differential equation that governs the motion
of the front in our experimental configuration. This equation
takes different forms depending on the loading scheme, which
manifest in the expression of the time-dependent imposed
deflection u(t). We explored two particular loading conditions
imposed on the experimental system, namely, a constant-
loading-velocity condition and a fixed-deflection condition.

As a first check, we computed the average crack-front
velocity v̄(t). We smoothed ā(t) values with a window running
along time and then dividing each incremental position by
the time interval between successive images. We estimated Ḡ

at each time interval from Eq. (7). The average crack-front
velocity is shown in Fig. 5 as a function of the average
energy release rate Ḡ using Eq. (7). We clearly observe that
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FIG. 5. Variation of the logarithm of the average crack-front
velocity as a function of the average energy release rate during an
experiment. The grayscale refers to time since the picture acquisition
starts. Both loading regimes (constant loading velocity, diamonds, and
relaxation regimes, circles) are included. We see the increase of Ḡ

and v̄ during the constant-loading-velocity regime, the stabilization
of Ḡ while the front is propagating at almost constant speed, and
the decrease of Ḡ and v̄ during the relaxation process. The linear
relationship between Ḡ and log10(v) is observed during all these
phases.

a linear relationship [ln(v̄) vs Ḡ] is a reasonable proxy of
the complete behavior of the experiment where the sample
undergoes multiple loading cycles: first a constant-loading-
velocity condition followed by a constant-deflection condition.
We also notice that Ḡ is almost constant while the front
velocity v̄ reaches a nearly steady value. The linear relationship
[ln(v̄) vs Ḡ] is valid for all 13 experiments shown in Fig.
6. The horizontal shift in Ḡ between experiments results
from variations of the fracture energy Ḡc from plate to plate.
Large-scale variations of the fracture energy on a given plate
are also expected. It results from the annealing process during
sample preparation, since temperature, plate thickness, and
normal load applied on the sample are not perfectly uniform
and may vary among plates [50]. As Ḡc cannot be solely
estimated from our experimental results (due to its coupling
with χ ), we set an arbitrary characteristic reference velocity in
our experiments vref and searched for an estimate of a reference
energy release rate Ḡref = Ḡ(vref) for each experiment that
provides the best superposition of all experimental curves [see
Fig. 6(b)]. Following Eq. (3), we get

ln(v̄/vref) = α2(Ḡ − Ḡref)

kBT
(9)

for each experiment. We set the reference velocity to 10−4

m/s, which is a typical order of magnitude of the crack-front
velocity in our experiments. Although values of Ḡref depend
on the particular choice of vref , the variation of Ḡref among
experiments remained constant regardless of the choice of
vref . We report values of Ḡref in Fig. 7. We used kB = 1.38 ×
10−23 J/K and T = 300 K and obtained the value of α by
least squares fitting over all experiments: α = 2.5 × 10−11 m.
α is the characteristic length scale at which the elementary
fracturing process is expected to occur. This implies that the
rupture process is governed by mechanisms operating at the
scale of the bond distance between atoms. This is consistent
with the underlying physics of the Arrhenius law, where each
individual degree of freedom in the system can break with a
certain probability set by thermodynamics to be a Boltzmann
distribution. These individual degrees of freedom probably
correspond to individual molecules crossing through the weak
interface.

The estimated reference energy release rate Ḡref has a
median and mean of 133 and 137 J/m2 respectively with
20% fluctuations (Fig. 7). Such a range of variation is
compatible with sample preparation variability (plate thick-
ness fluctuation, non-fully-homogeneous annealing procedure,
sandblasting variability, etc.) and is also consistent with results
obtained in [50]. Furthermore, variations of Ḡref are found to be
small for experiments that are performed on the same PMMA
plate and close to each other (i.e., consecutive experiments that
were initiated just one after the other on a small region of the
plate) but with significant differences when changing plates or
exploring very different zones of the same plate [Fig. 6(a)].
It therefore suggests that the horizontal shift observed on Fig.
6(a) between experiments results from variations in Ḡc.

Other relations linking the crack speed to the energy release
rate have been proposed. These are (1) v̄ ∼ e−E′kBT Gn/2 [15]
and (2) transforming �G in (3) into �G−μ, where the
exponent μ arises from possible 3D paths taken by the crack
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FIG. 6. (a) Variation of the logarithm of the average crack-front
velocity as a function of the average energy release rate. All
experiments are reported in this figure and are distinguished by
gray levels and symbols. Similar gray levels indicate experiments
performed in the same region of one specific plate (short separation
distance between fracture onsets). The reference velocity vref used to
estimate Ḡref is shown as a horizontal black line. Upper and lower
bounds of Ḡref are indicated with arrows. (b) Superimposition of all
experiments when plotted as a function of Ḡ − Ḡref . The dashed line
represents the best-fitted model. The slope of this line is related to the
value of α and is α2/kBT .

[41,51]. Our experimental data do not allow us to discriminate
among these different formulations. We consider the simple
Arrhenius law introduced in Eq. (3), where the energy barrier is

0.0

0.2

0.4

0.6

0.8

1.0

F
(G

re
f )
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G     (J/m2)ref

FIG. 7. Cumulative distribution function of the estimated values
of Ḡref for all experiments (gray dots). Values are distributed between
109 and 162 J/m2 with a mean of 137 J/m2. The dark curve represents
the expected cumulative distribution function for a normal distribution
with similar mean and standard deviation as inferred from our
experimental data.

linearly related to the difference between G and Gc, a relevant
model of the fracture process for our experiments. Indeed, it
fits our experimental data over several orders of magnitude of
average crack speed (Fig. 6).

V. NUMERICAL SOLUTIONS

We solve the Arrhenius law [Eq. (3)] with the prescribed
loading and dependence of Ḡ on ā and u [Eq. (8)] to obtain
predictions of the evolution, for each experiment, of the
front position, the loading force, and the energy release rate.
This allows a second check on the validity of the activated
energy mechanism to describe the crack-front propagation.
Unfortunately, setting u = Vlt or u = const in Eq. (8) does
not lead to analytical solutions. Therefore, we proceed to solve
Eq. (8) numerically.

We first introduce a characteristic speed v1 defined as

v1 = χ exp

(
− α2Ḡc

kBT

)
(10)

= vref exp

(
− α2Ḡref

kBT

)
. (11)

Then, we introduce dimensionless variables ā′ = ā/λ and t ′ =
t/τ that transform Eq. (8) into a simpler form. In the forced
regime we introduce

λ = α
Vl

v1

(
3Eh3

8kBT

)1/2

, (12)

τ = λ

v1
, (13)

which lead to

dā′

dt ′
= exp

(
t ′2

ā′4

)
, (14)

where u = Vlt .
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FIG. 8. Variation of force F , front position ā, and energy release
rate Ḡ obtained during six experiments (gray points) carried out in the
forced regime. The results of the numerical integration of Eq. (14)
are drawn as black lines. The model captures most of the features
observed in our experiments, such as the peak value of the force
and its occurrence time. It also captures the appearance of a Griffith
regime, i.e., the fact that Ḡ is close to constant at large enough crack
speed.

We use Eq. (5) to compute the force from the front position.
We numerically solve Eq. (14) using a simple Euler model with
a constant time step. We found that the evolution of ā and F

can both be well reproduced as solutions of Eq. (14) when
we set α = 2.5 × 10−11 m and Ḡref = 152 J/m2. These values
fall in the range of estimated parameters (Fig. 7) and represent
acceptable results. We should note that α and Ḡref are not well
constrained as they are highly correlated. A change in α can
be balanced by a change in Ḡref . The evolution of force, front
position, and Ḡ along with numerical solutions of Eq. (14)
are shown in Fig. 8 for six experiments. The loading velocity
is Vl = 310 μm/s for the first three experiments and Vl =
62 μm/s for the remaining three experiments. The width of
the plate is 2.84 cm and the Young modulus of the PMMA plate
is E = 3.2 GPa. All solutions with a common loading velocity
tend to align on the same curve after a sufficiently long time.
This results from the common time dependence of Eq. (14)
in all experiments with the same loading velocity. Differences
arise from the variation of the initial front position at the start
of the experiment. Our numerical model, resulting from the

coupling of the cantilever beam configuration of our system
and the activated energy mechanism necessary to describe the
fracture process, is in good agreement with the evolution of
the force, front position, and energy release rate (Fig. 8).

The integration of this thermal activation model with the
large-scale elastic mechanics, over these characteristic time
scales, with a constant velocity loading, leads to roughly
constant values of Ḡ during the propagation: this means that
the fact that Ḡ = constant , i.e., a Griffith regime, results from
the direct integration of this subcritical model with a proper
forcing in the evaluation of Ḡ.

The numerical model depends on the choice of several
parameters (E,b,h) that are affected by uncertainties. It is
possible to improve the fits to our data by varying these
parameters within their uncertainty range. However, the
discrepancy between the model and the data is small and could
also be the result of second-order effects affecting the crack
propagation (e.g., viscoelastic effects).

We now turn to the relaxation regime where the beam
deflection is constant. We observe an evolution of the front
position (Fig. 4) that is a priori not compatible with LEFM
theory and the viscous rheology model as used in simulations,
e.g., by Bonamy et al. [52], which assumed that the transition
to zero propagation velocity of the front is sharp when the
energy release rate is below the critical energy for fracture
propagation (Griffith criterion, zero-temperature limit). We
obtain the evolution of the crack front in this relaxation
regime by setting ustop = Vltstop in Eq. (8) and solving the
dimensionless differential equation:

λ =
(

3Eh3α2u2
stop

8kBT

)1/4

, (15)

τ = λ

v1
, (16)

leading to

dā′

dt ′
= exp

(
1

ā′4

)
. (17)

We keep the same estimate of α and Ḡref , that we obtained in
the constant-loading-velocity regime, when solving Eq. (17).
We compare the results of the integration of Eq. (17) to the
experimental observations shown in Fig. 2. The evolution of
the force and front position obtained from the experimental
data and from the numerical model are shown Fig. 9. The fit
to the front position provided by the integration of Eq. (17)
is in close agreement with the observations. We also fitted
our numerical model to the long-lasting experiment (18 h of
relaxation). As this experiment was performed on a different
sample, we calculated Ḡref and α for this experiment. We
obtained our best fit by setting α = 1.8 × 10−11 m and
Ḡref = 142J/m2 (Fig. 9). Both force and front position are
well reproduced by the numerical model [dark continuous line
in Figs. 9(a) and 9(b)]. However, the front position departs
from the computed position at long times [Fig. 9(b)]. This may
imply that additional processes are taking place and affecting
the front propagation or that some parameters, considered as
constant, did actually vary over the course of this experiment,
for instance temperature or the broad scale of the fracture
toughness.
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FIG. 9. Variation of force F and front position ā obtained during
the relaxation regime for the experiment displayed on Fig. 2 and for
5 min [gray dots, (c) and (d)]. Results of the numerical integration
are represented as black line. Same representation is made for the
experiments monitored for more than 18 h in the relaxation regime
and is displayed in the two upper graphs [(a) and (b)]. The dashed
line shows the evolution of force deduced from the fit of the front
position from Eq. (1).

VI. DISCUSSION

Equation (8) governs the large-scale motion of the crack.
Unfortunately, it has no analytical solutions for the two loading
regimes of interest to our experiments. Nonetheless, we show
that two simple approximations lead to analytical expressions
of the front advance in close agreement with our experimental
observations.

A. Constant-G approximation

Here we focus on the case where the energy release rate
can be considered as constant: Ḡ = const. This condition
corresponds to a constant crack velocity v̄ = const [Eq. (3)].
We clearly observe the propagation of the front reaching a
quasiconstant velocity during the forced regime (V1 = const 	=
0) after an initiation phase [Fig. 2(b)]. An initiation phase is
expected as the front velocity cannot jump instantaneously
from zero to its steady state value. To first order, the energy
release rate Ḡ remains the same in the forced regime, Ḡ = G0,
during the crack propagation.

For a constant energy release rate G, we derive from
Eq. (7)

Ḡ = 3Eδ3

8

u2

ā4
= G0 = const. (18)

Introducing A = ( 3Eδ3

8G0
)1/4, we get

ā(u) = Au1/2. (19)

Therefore a constant energy release rate implies a scaling
between the average front position ā and the deflection u.
In fact, Eq. (19) is of the form of the fit used in Fig. 3. It thus
provides a physical basis to the empirical relation proposed to
fit the data.

On the other hand, the result of Eq. (19) implies that
v̄(t) ∝ Vl/ā as u ∝ Vlt in the forced regime. The front velocity
decreases at constant G as the crack front advances. However,
as ā is small around the initial front position for each
incremental experiment along the same sample, v̄ is small
as well. Finally, it is noticeable in Fig. 8 that the experimental
evolution of the energy release rate Ḡ is almost constant for
the entire duration of the investigated range after an initiation
period well reproduced by the complete numerical integration
of the Arrhenius law [Eq. (8)]. This is also in agreement with
the hypothesis of Ḡ = const in this forced regime.

B. First-order approximation of G

Now we focus on characterizing the relaxation process (t >

tstop). We recall that the loading velocity is zero (Vl = 0 for t >

tstop) during this time interval. The force decreases with time
while the average position of the front continues to increase in
a logarithmic fashion (Figs. 2 and 4). We analyze a first-order
approximation of the solution assuming that ā(t) is small in
this relaxation regime. We derive a first-order expansion of Ḡ

around some position ā0 = ā(tstop):

Ḡ = G0 + dḠ(ā0)

dā
(ā − ā0), (20)

where G0 = Ḡ(ā0) and dḠ(ā0)
dā

can be computed from
Eq. (7) as

dḠ(ā0)

dā
= −4G0

ā0
. (21)

Replacing (20) and (21) into Eq. (3), we obtain

v̄ = χ ′ exp

(
− 4α2G0ā

ā0kBT

)
(22)

with χ ′ = χ exp(α2 −Ḡc+5G0
kBT

). The above equation integrates to

ā(t) = kBT ā0

4α2G0
ln

[
4χ ′G0α

2

kBT ā0
(t − t0) + exp

(
4G0α

2

kBT

)]
, (23)

where t0 and ā0 are the lower integration limits, corresponding
to the initial time and position, respectively, where we consider
the creep conditions to apply. The above expression can
be simplified by setting H0 = (5G0−Ḡc)α2

kBT
, β = 5G0−Ḡc

4G0
, and
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introducing the characteristic time t∗ = βā0

H0χ
exp[−H0(1 −

1/β)]. This yields

ā(t) − ā0 = ā0β

H0
ln

[
t − t0

t∗
+ 1

]
. (24)

At large times, when t − t0 
 t∗, the above equation
reduces to

ā(t) − ā0 ≈ ā0β

H0
ln

(
t − t0

t∗

)
, (25)

v̄(t) ≈ ā0β

H0

1

t − t0
. (26)

Logarithmic relaxation has also been observed in granular
media [21]. In rock mechanics, Scholz [16] developed a simple
model of creep in heterogeneous media where the collective
behavior resulting from local decreases of strength leads to
a similar ∝t−1 evolution of the deformation rate during the
creep regime. The functional form of Eq. (24) is similar to
that of Eq. (1) used to describe the evolution of the front in
this relaxation regime (Fig. 4). It implies that Eq. (24) also
provides a good description of the data and that our first-
order approximation is valid in the range investigated in our
experiments.

VII. CONCLUSIONS

We explored the average velocity of an interfacial crack
under two different loading conditions. These are (1) a forced
regime with imposed constant loading velocity and (2) a
relaxation regime. Both conditions induce crack velocities
much lower than the Rayleigh wave velocity of the material.
As often observed for homogeneous or weakly heterogeneous
materials, the constant-speed loading regime is compatible
with a constant energy release rate, and the relaxation regime is
compatible with a logarithmic deformation. The macroscopic
evolution of the crack front is smooth and continuous, charac-
teristic of creep processes. This is opposite to what is observed
and modeled at the local scale, namely, an intermittency
of the fracture process described by a succession of local
discrete brittle failures [8,30]. Such “brittle-creep” behavior
has been extensively studied in rocks where acoustic emissions
are recorded during the otherwise slow global deformation
of the sample (e.g., [16,41,53]) or in other materials like
paper [12,42,54].

We developed a thermally activated fracture model that
consists of a set of independent microscopic sites that break
according to an Arrhenius law. The energy barrier is assumed to
be a function of the difference between the local energy release
rate G and the local critical energy release rate Gc. We show
for independent microscopic sites in time and space that the
model reduces to 1D where the crack tip advance is controlled
by the difference between the average energy release rate Ḡ

and the average critical energy release rate Ḡc. The model
describes the fracturing process in the subcritical regime as a
mechanism sensitive only to the applied stress on the crack tip
and the effective toughness of the material. It allows the crack
propagation to be driven below the critical energy release rate
by statistical stress fluctuations that trigger rupture at the scale
of atomic bonds. The typical length scale of the process is on
the order of picometers, in agreement with values reported by

Ponson [41] for rock samples and by Santucci et al. [42] for
paper. This suggests that the creeping mechanism we observe
is related to breakage at the typical length scale of atomic bonds
and that stress fluctuations can trigger rupture of these atomic
bonds. The length scale of this process, a few 10−11–10−10

m, is much smaller than the correlation length scale of the
toughness heterogeneity of the material, typically on the order
of the glass bead size used during sample preparation blasting
(1 × 10−4 –5 × 10−4 m) [50,55].

All experimental data of the macroscopic evolution of
the crack are well explained by the proposed subcritical
mechanism despite the different tested loading conditions.
Neglect of this temperature effect does not give a correct
description of the crack propagation in a constant-deflection
regime during relaxation tests. Moreover, several factors that
would possibly influence the progression of the crack have
been disregarded. They include possible finite mechanical
rotation of the plate, viscoelastic flows inside the bulk of the
PMMA plate like microbubbles, or chemical processes. The
thermally activated model we propose clearly reproduces the
evolution of the front during experiments over a large range
of time scales (from 10−1 to more than 104 s) and different
loading paths, at least when the average advance of the front, ā,
is small compared to its initial position. Therefore, neglected
mechanisms have second-order effects on the crack evolution
compared to the stress-induced creeping mechanism.

We reproduce the large-scale evolution of the front propaga-
tion despite a simple description of the heterogeneous nature of
the material. The macroscopic behavior of the interface with
spatially fluctuating toughness induced by the sandblasting
procedure is represented by an average quantity. This might be
due to the limited heterogeneity of the toughness when seen at
a centimeter scale, as evidenced by the almost flat geometry of
the crack front line (we never observed crack-front distortions
bigger than 10% of the system scale). Although heterogeneities
are present and are encountered during the crack propagation,
the macroscopic scale evolution is well described by the
average energy release rate, an average quantity among all
local sites. Such large-scale information appears sufficient to
predict the overall large-scale dynamics of the propagating
crack under various loading regimes.
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APPENDIX

In our configuration, the force applied on the plates is
mostly tangential to the plates, which contributes to reduce
mode II loading: this is achieved by applying the force at the
free end of the bent plate with a freely rotating rod (using ball
bearings). Furthermore, the rod is made of polyamide PA 6.6
(nylon) and thus has a low friction coefficient. It ensures that
minimum shear forces are actually applied on the bending plate
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FIG. 10. General configuration of bent plates, adapted from [56]
to the configuration used in this work.

and thus limits the existence of mode II fracture component in
our experiments.

Even though this tangential force at the free end of the beam
is reduced, the loading asymmetry in our configuration, and the
unequal thickness of the two plates, may induce some mode
II component at the crack tip. This can be precisely evaluated
by following the development detailed below. Following the
general formulation presented in [56] for a nonsymmetric
beam configuration, based on the evaluation of the J integral in
a general two-plate configuration, we can calculate precisely
the values of the forces per unit length applied on the ends
of the plates both normal to the plates, F1, F2, and F3, and
tangential, P1, P2, and P3, as well as the torques per unit
length with respect to the tip, M1, M2, and M3; see Fig. 10.

The design of the setup guarantees that the tangential
components are minimal with respect to the normal ones: we
will consider that P1 = P2 = P3 = 0. The distance between
the tip and the rod being denoted ā, and Fl = F/b the force
exerted on the lower plate (F is the total force, and b the
plate width; hence the force per unit length is Fl = F/b),
one writes F1 = Fl , and the torque on the lower plate is
M = M1 = Flā. The torques on the upper plate and on the
opposite end are M2 = F2ā and M3 = F3(L − ā), where
L is the plate length. The equilibrium between the forces
ensures that F1 = F2 − F3, and the one between the torques
(nonrotation of the plates) that M1 = M2 + M3. Hence, we
have

F2 − F3 = Fl, (A1)

F2ā + F3(L − ā) = Flā, (A2)

which leads to

F3 = 0, F2 = F1 = Fl, M2 = M1 = M = Flā.

From Eq. (3.7) in Hutchinson and Suo [56] this allows us to
obtain separately the values of the stress intensity factors KI

and KII in order to evaluate their relative importance. From
the general asymmetric beam configuration and applying the
particular boundary condition imposed in our system, we get
with the thicknesses of the two plates, h1 = 0.5 cm and h2 =
1 cm, the ratio η = h1/h2 = 0.5/1 = 0.5, and the constants,
evaluated from [56],

sin(γ ) = (6
√

UV )η2(1 + η), (A3)

1/V = 12(1 + η3), (A4)

1/U = 1 + 4η + 6η2 + 3η3, (A5)

ω = 52.1◦ − 3◦η, (A6)

which leads to

V = 0.074, (A7)

U = 0.21, (A8)

γ = 16◦, (A9)

ω = 51◦. (A10)

With these constants, the general formula Eq. (3.7) in [56]
reduces to

KI = āFl√
2h3

1V

sin(ω + γ ), (A11)

KII = − āFl√
2h3

1V

cos(ω + γ ). (A12)

This yields an estimate of

KII /KI = 0.43.

It thus implies that the mode II component is not negligible in
our problem. Taking into account the details of this asymmetry
leads to the formulation of the energy release rate Ḡ for a
propagation of the crack at the interface between the two
plates in our system, in mixed mode. The energy release rate
does not separate the rupture modes, which present a similar
dependence on ā. The fact that the fracture propagates along
the interface is due to a combination of factors: First, KII

remains smaller than KI , which does not favor an out-of-plane
branching of the crack. Next, the toughness Kc is smaller along
the interface than anywhere else in the bulk of the plates, due
to the preparation of the samples, for both modes I and II. It
thus favors a propagation of the crack along the interface, as
is indeed observed.

Following the general formulation from [56] [or directly
from their Eq. (3.6)], the energy release rate per unit length in
our system is thus

Ḡ = ḠI + ḠII (A13)

= (
K2

I + K2
II

)
/E (A14)

= M2

2Eh3
1V

[sin2(ω + γ ) + cos2(ω + γ )] (A15)

= F 2
l ā2

2Eh3
1

[
12

(
1 + h2

2/h2
1

)]
(A16)

= 6F 2
l ā2

Eh3
, (A17)

where h3 is defined as
1

h3
= 1

h3
1

+ 1

h3
2

(A18)

and h1 and h2 are respectively the thicknesses of the bottom
and the upper plate. This then yields

G = 6F 2ā2

Eh3b2
= 1

b

dUE

dā
, (A19)

which has the opposite sign to Eq. (4) because

dUE(F )

dā

∣∣∣∣
F

= −dUE(u)

dā

∣∣∣∣
u

[4]. Integration of the previous expression shows that

UE = 2F 2ā3

Ebh3
, (A20)
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and since due to linear elasticity, the stored elastic energy is

UE = Fu/2,

it leads to

u = 4F ā3

Eh3b
, F = Eh3bu

4ā3
, (A21)

so that

Ḡ = 3u2Eh3

8ā4
. (A22)

If one used instead an estimate of Ḡ based on a pure mode I,

symmetric loading hypothesis, one would get

Ḡ = 3u2Eh3
1

8ā4
. (A23)

Taking into account this asymmetry thus leads to a change
in the estimate of Ḡ by a factor

ρ = h3
1 + h3

2

h3
2

. (A24)

As h1 = 5 mm and h2 = 1 cm in our experiments, it then
yields ρ = 1.125.

[1] B. K. Atkinson, Fracture Mechanics of Rocks (Academic Press,
San Diego, 1991).

[2] E. Schulson and P. Duval, Creep and Fracture of Ice (Cambridge
University Press, Cambridge, 2009).

[3] I. Smith, E. Landis, and M. Gong, Fracture and Fatigue in Wood
(John Wiley & Sons, New York, 2003).

[4] T. L. Anderson, Fracture Mechanics—Fundamentals and Appli-
cations, 2nd ed. (CRC Press, Boca Raton, FL, 1995).

[5] B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge
University Press, Cambridge, 1993).

[6] L. Freund, Dynamic Fracture Mechanics (Cambridge University
Press, Cambridge, 1990).

[7] J. Fineberg and M. Marder, Phys. Rep. 313, 1 (1999).
[8] D. Bonamy, J. Phys. D 42, 214014 (2009).
[9] D. Unger, Analytical Fracture Mechanics (Dover, New York,

1995).
[10] J. R. Rice, J. Mech. Phys. Solids 26, 61 (1978).
[11] L. D. Landau and Lifshitz, Statistical Physics, Part 1, 3rd ed.

(Pergamon, Oxford, 1980).
[12] L. Vanel, S. Ciliberto, P.-P. Cortet, and S. Santucci, J. Phys. D

42, 214007 (2009).
[13] S. W. Freiman, J. Geophys. Res. 86, 4072 (1984).
[14] S. M. Wiederhorn and L. H. Bolz, J. Am. Ceram. Soc. 53, 543

(1970).
[15] R. J. Charles, J. Appl. Phys. 29, 1549 (1958).
[16] C. H. Scholz, J. Geophys. Res. 73, 3295 (1968).
[17] E. Favier, V. Lazarus, and J.-B. Leblond, in Modern Practice

in Stress and Vibration Analysis 2003 (MPSVA2003), Glasgow,
edited by M. S. Forum (Trans Tech Publications, Zurich, 2003),
Vol. 440-441, pp. 153–160.

[18] N. Pindra, V. Lazarus, and J.-B. Leblond, J. Mech. Phys. Solids
58, 281 (2010).

[19] V. Lazarus, J. Mech. Phys. Solids 59, 121 (2011).
[20] S. N. Zhurkov, Int. J. Fract. Mech. 1, 311 (1965).
[21] R. R. Hartley and R. P. Behringer, Nature (London) 421, 928

(2003).
[22] L. Bocquet, E. Charlaix, S. Ciliberto, and J. Crassous, Nature

(London) 396, 735 (1998).
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K. J. Måløy, Phys. Rev. E 83, 046108 (2011).
[32] H. Gao and J. R. Rice, J. Appl. Mech. 56, 828 (1989).
[33] J. Schmittbuhl, S. Roux, J.-P. Vilotte, and K. J. Måløy, Phys.
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