18 research outputs found

    The point spread function of electrons in a magnetic field, and the decay of the free neutron

    Full text link
    Experiments in nuclear and particle physics often use magnetic fields to guide charged reaction products to a detector. Due to their gyration in the guide field, the particles hit the detector within an area that can be considerably larger than the diameter of the source where the particles are produced. This blurring of the image of the particle source on the detector surface is described by a suitable point spread function (PSF), which is defined as the image of a point source. We derive simple analytical expressions for such magnetic PSFs, valid for any angular distribution of the emitted particles that can be developed in Legendre polynomials. We investigate this rather general problem in the context of neutron beta decay spectrometers and study the effect of limited detector size on measured neutron decay correlation parameters. To our surprise, insufficient detector size does not affect much the accuracy of such measurements, even for rather large radii of gyration. This finding can considerably simplify the layout of the respective spectrometers.Comment: 24 pages, 12 figure

    Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay

    Full text link
    We report on a new measurement of the neutron beta-asymmetry parameter AA with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1)P = 99.7(1)% from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=0.11996(58)A_0 = -0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=1.2767(16)\lambda = g_\mathrm{A}/g_\mathrm{V} = -1.2767(16)Comment: 5 pages, 4 figure

    Measurement of the Neutrino Asymmetry Parameter B in Neutron Decay

    Full text link
    A new measurement of the neutrino asymmetry parameter B in neutron decay, the angular correlation between neutron spin and anti-neutrino momentum, is presented. The result, B=0.9802(50), agrees with the Standard Model expectation and earlier measurements, and permits improved tests on ``new physics'' in neutron decay.Comment: 4 pages, 2 figures; v2: revised PRL versio

    Characterization of a ballistic supermirror neutron guide

    Full text link
    We describe the beam characteristics of the first ballistic supermirror neutron guide H113 that feeds the neutron user facility for particle physics PF1B of the Institute Laue-Langevin, Grenoble (ILL). At present, the neutron capture flux density of H113 at its 20x6cm2 exit window is 1.35x10^10/cm^2/s, and will soon be raised to above 2x10^10/cm^2/s. Beam divergence is no larger than beam divergence from a conventional Ni coated guide. A model is developed that permits rapid calculation of beam profiles and absolute event rates from such a beam. We propose a procedure that permits inter-comparability of the main features of beams emitted from ballistic or conventional neutron guides.Comment: 15 pages, 11 figures, to be submitted to Nuclear Instruments and Methods

    A clean, bright, and versatile source of neutron decay products

    Full text link
    We present a case study on a new type of cold neutron beam station for the investigation of angular correlations in the beta-decay of free neutrons. With this beam station, called PERC, the 'active decay volume' lies inside the neutron guide, and the charged neutron decay products are magnetically guided towards the end of the neutron guide. Hence, the guide delivers at its exit a beam of decay electrons and protons, under well-defined and precisely variable conditions, which can be well separated from the cold neutron beam. In this way a general-purpose source of neutron decay products is obtained which can be used for various different experiments in neutron decay correlation spectroscopy. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Neutron beam related background is separately measurable in PERC, and magnetic mirror effects on the charged neutron decay products and edge effects in the active neutron beam volume are both strongly suppressed. Therefore the spectra and angular distributions of the emerging decay particles will be distortion-free on the level of 10^-4, more than 10 times better than achieved today.Comment: 20 pages, 6 figure

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Constraints on the Dark Matter Interpretation nχ+e+en \rightarrow \chi + e^+ e^- of the Neutron Decay Anomaly with the PERKEO II experiment

    No full text
    International audienceDiscrepancies from in-beam- and in-bottle-type experiments measuring the neutron lifetime are on the 4σ standard deviation level. In a recent publication Fornal and Grinstein proposed that the puzzle could be solved if the neutron would decay on the one percent level via a dark decay mode, one possible branch being n→χ+e+e-. With data from the Perkeo II experiment we set limits on the branching fraction and exclude a one percent contribution for 95% of the allowed mass range for the dark matter particle
    corecore