156 research outputs found

    A Wormhole at the core of an infinite cosmic string

    Get PDF
    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π2 \pi deficit at the core. We show that the coordinate singularity associated to this defect can be interpreted as a traversible wormhole lodging at the the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott's like solution, that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.

    Root-type ferredoxin-NADP(+) oxidoreductase isoforms in Arabidopsis thaliana : Expression patterns, location and stress responses

    Get PDF
    In Arabidopsis, two leaf-type ferredoxin-NADP(+) oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP(+), while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using beta-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.Peer reviewe

    A 96-well format for a high-throughput baculovirus generation, fast titering and recombinant protein production in insect and mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baculovirus expression vector system (BEVS) has become a standard in recombinant protein production and virus-like particle preparation for numerous applications.</p> <p>Findings</p> <p>We describe here protocols which adapt baculovirus generation into 96-well format.</p> <p>Conclusion</p> <p>The established methodology allows simple baculovirus generation, fast virus titering within 18 h and efficient recombinant protein production in a high-throughput format. Furthermore, the produced baculovirus vectors are compatible with gene expression in vertebrate cells <it>in vitro </it>and <it>in vivo</it>.</p

    Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity.

    Get PDF
    Despite the crucial roles of phytohormones in plant development, comparison of the exact distribution profiles of different hormones within plant meristems has thus far remained scarce. Vascular cambium, a wide lateral meristem with an extensive developmental zonation, provides an optimal system for hormonal and genetic profiling. By taking advantage of this spatial resolution, we show here that two major phytohormones, cytokinin and auxin, display different yet partially overlapping distribution profiles across the cambium. In contrast to auxin, which has its highest concentration in the actively dividing cambial cells, cytokinins peak in the developing phloem tissue of a Populus trichocarpa stem. Gene expression patterns of cytokinin biosynthetic and signaling genes coincided with this hormonal gradient. To explore the functional significance of cytokinin signaling for cambial development, we engineered transgenic Populus tremula × tremuloides trees with an elevated cytokinin biosynthesis level. Confirming that cytokinins function as major regulators of cambial activity, these trees displayed stimulated cambial cell division activity resulting in dramatically increased (up to 80% in dry weight) production of the lignocellulosic trunk biomass. To connect the increased growth to hormonal status, we analyzed the hormone distribution and genome-wide gene expression profiles in unprecedentedly high resolution across the cambial zone. Interestingly, in addition to showing an elevated cambial cytokinin content and signaling level, the cambial auxin concentration and auxin-responsive gene expression were also increased in the transgenic trees. Our results indicate that cytokinin signaling specifies meristematic activity through a graded distribution that influences the amplitude of the cambial auxin gradient.J.I., K.N., J.A.S. and Y.H. were funded by ERC, Fibic EffFibre, Academy of Finland (by Centre of Excellence and other programs) and Tekes. O.P.S., L.P. and P.A. were funded by Academy of Finland. The hormone analysis was supported by Japan Advanced Plant Science Network. R.P.B. was funded by grants from Berzili, TC4F and FUTURE trees.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cub.2016.05.05

    A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo

    Get PDF
    We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional system allowing easy and fast production of recombinant baculoviruses with high diversity and negligible background. Cloning of the desired DNA fragments or libraries is based on the recombination system of bacteriophage lambda. As an example of the utility of the vector, genes or cDNAs of 18 different proteins were cloned into pBVboostFG and expressed in different hosts. As a proof-of-principle of using the vector for library screening, a chromophoric Thr(65)-Tyr-Gly(67)-stretch of enhanced green fluorescent protein was destroyed and subsequently restored by novel PCR strategy and library screening. The pBVboostFG enables screening of genome-wide libraries, thus making it an efficient new platform technology for functional genomics

    Topological Defects and Cosmology

    Get PDF
    Many particle physics models of matter admit solutions corresponding to stable or long-lived topological defects. In the context of standard cosmology it is then unavoidable that such defects will form during phase transitions in the very early Universe. Certain types of defects lead to disastrous consequences for cosmology, others may play a useful role, as possible seeds for the formation of structure in the Universe, or in mediating baryon number violating processes. In all cases, topological defects lead to a fruitful interplay between particle physics and cosmology.Comment: 17 pages, no figures; Invited lectures at WHEPP-5, IUCAA, Pune, India, Jan. 12 - 26 199

    Root-type ferredoxin-NADP(+) oxidoreductase isoforms in Arabidopsis thaliana: Expression patterns, location and stress responses

    Get PDF
    In Arabidopsis, two leaf-type ferredoxin-NADP(+) oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP(+), while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using beta-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.</p
    corecore