31 research outputs found
‘Speaking Truth’ Protects Underrepresented Minorities’ Intellectual Performance and Safety in STEM
We offer and test a brief psychosocial intervention, Speaking Truth to EmPower (STEP), designed to protect underrepresented minorities’ (URMs) intellectual performance and safety in science, technology, engineering, and math (STEM). STEP takes a ‘knowledge as power’ approach by: (a) providing a tutorial on stereotype threat (i.e., a social contextual phenomenon, implicated in underperformance and early exit) and (b) encouraging URMs to use lived experiences for generating be-prepared coping strategies. Participants were 670 STEM undergraduates [URMs (Black/African American and Latina/o) and non-URMs (White/European American and Asian/Asian American)]. STEP protected URMs’ abstract reasoning and class grades (adjusted for grade point average [GPA]) as well as decreased URMs’ worries about confirming ethnic/racial stereotypes. STEP’s two-pronged approach—explicating the effects of structural ‘isms’ while harnessing URMs’ existing assets—shows promise in increasing diversification and equity in STEM
Recommended from our members
Investigating Instructor Talk in Novel Contexts: Widespread Use, Unexpected Categories, and an Emergent Sampling Strategy.
Instructor Talk-noncontent language used by instructors in classrooms-is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy. We observed widespread use of Instructor Talk with variation in the amount and category type used. The vast majority of Instructor Talk could be characterized using the originally published Instructor Talk framework, suggesting the robustness of this framework. Additionally, a new form of Instructor Talk-Negatively Phrased Instructor Talk, language that may discourage students or distract from the learning process-was detected in these novel course contexts. Finally, the emergent sampling strategy described here may allow investigation of Instructor Talk in even larger numbers of courses across institutions and disciplines. Given its widespread use, potential influence on students in learning environments, and ability to be sampled, Instructor Talk may be a key variable to consider in future research on teaching and learning in higher education
Recommended from our members
Collectively Improving Our Teaching: Attempting Biology Department–wide Professional Development in Scientific Teaching
Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations
Improving biology faculty diversity through a co-hiring policy and faculty agents of change.
Persons Excluded due to Ethnicity and Race (PEERs) remain underrepresented in university faculties, particularly in science, technology, engineering, math and medicine (STEMM) fields, despite increasing representation among students, and mounting evidence supporting the importance of PEER faculty in positively impacting both scientific and educational outcomes. In fact, the ratio of PEER faculty to students has been steadily dropping since 2000. In our case study, we examine the factors that explain creation of an unusually diverse faculty within a biology department. We analyzed nearly 40 years of hiring data in the study department and show that this department (the study department), historically and currently, maintains a significantly higher proportion of PEERs on faculty as compared to two national datasets. Additionally, we identify factors that contributed to hiring of PEERs into tenure and tenure-track positions. We observed a significant increase in the hiring of PEERs concurrent with the implementation of a co-hiring policy (p = 0.04) which allowed a single search to make two hires when at least one candidate was a PEER. In contrast, three key informants at sister departments reported that co-hiring policies did not result in PEER hires, but instead different practices were effective. In line with one of these practices, we observe a possible association between search committees with at least one PEER member and PEER hiring (p = 0.055). Further, the presence of particular faculty members (Agents of Change) on search committees is associated with PEER hiring. In this case study the combination of a co-hire policy based on the principle of interest-convergence to redress hiring inequities, along with the presence of agents of change, increased faculty PEER representation in STEMM departments
Recommended from our members
Insider community-engaged research for Latinx healing in nature: Reflections on and extensions from Phase 1 of the Promoting Activity and Stress Reduction in the Outdoors (PASITO) project
In Spanish, pasito means “small step,” and in Phase 1 of the PASITO (Promoting Activity and Stress Reduction in the Outdoors) project we took small steps towards reclaiming nature for Latinx communities. The Latinx reclamation of green spaces for healing is a necessary step alleviating the observed unequal burden of chronic and infectious disease. Paradoxically, the Latinx community who could greatly benefit from green spaces has reduced access, as is the case for many poor communities of color. This perspective seeks to reflect on and utilize the lessons learned from PASITO in order to expand the positive impacts of nature for communities of color. Through self-reflection by members of the academic research team and a community leader, as well as preliminary analysis of qualitative data gathered from PASITO participants, we share insights from a community-engaged research project. Our approach validated culturally competent research practices with insider researchers, as well as culturally sensitive biospecimen collection, and revealed steps towards recruitment, retention, and healing for Latinx participants in research projects. These findings come at a pivotal time for park stewards and green space researchers as the need for spaces for healing accelerates for all communities of color, including Latinx, as we face a society plagued by biological and social reckonings. To find true and sustained healing within these communities calls for communities to progress from small steps towards giant strides in the reclamation of natural landscapes for well-being
Recommended from our members
Racial Discrimination and Telomere Length in Midlife African American Women: Interactions of Educational Attainment and Employment Status
BackgroundOver the life course, African American (AA) women have faster telomere attrition, a biological indicator of accelerated aging, than White women. Race, sex, age, and composite socioeconomic status (SES) modify associations of institutional racial discrimination and telomere length. However, interactions with everyday racial discrimination have not been detected in AA women, nor have interactions with individual socioeconomic predictors.PurposeWe estimated statistical interaction of institutional and everyday racial discrimination with age, education, employment, poverty, and composite SES on telomere length among midlife AA women.MethodsData are from a cross-section of 140 AA women aged 30-50 years residing in the San Francisco Bay Area. Participants completed questionnaires, computer-assisted self-interviews, physical examinations, and blood draws. Adjusted linear regression estimated bootstrapped racial discrimination-relative telomere length associations with interaction terms.ResultsRacial discrimination did not interact with age, poverty, or composite SES measures to modify associations with telomere length. Interactions between independent SES variables were nonsignificant for everyday discrimination whereas institutional discrimination interacted with educational attainment and employment status to modify telomere length. After adjusting for covariates, we found that higher institutional discrimination was associated with shorter telomeres among employed women with lower education (β = -0.020; 95% confidence interval = -0.036, -0.003). Among unemployed women with higher education, higher institutional discrimination was associated with longer telomeres (β = 0.017; 95% confidence interval = 0.003, 0.032). Factors related to having a post-high school education may be protective against the negative effects of institutional racism on cellular aging for AA women
Geospatial Distributions of Lead Levels Found in Human Hair and Preterm Birth in San Francisco Neighborhoods
In San Francisco (SF), many environmental factors drive the unequal burden of preterm birth outcomes for communities of color. Here, we examine the association between human exposure to lead (Pb) and preterm birth (PTB) in 19 racially diverse SF zip codes. Pb concentrations were measured in 109 hair samples donated by 72 salons and barbershops in 2018–2019. Multi-method data collection included randomly selecting hair salons stratified by zip code, administering demographic surveys, and measuring Pb in hair samples as a biomarker of environmental exposure to heavy metals. Concentrations of Pb were measured by atomic emission spectrometry. Aggregate neighborhood Pb levels were linked to PTB and demographic data using STATA 16 SE (StataCorp LLC, College Station, TX, USA). Pb varied by zip code (p < 0.001) and correlated with PTB (p < 0.01). Increases in unadjusted Pb concentration predicted an increase in PTB (β = 0.003; p < 0.001) and after adjusting for poverty (β = 0.002; p < 0.001). Confidence intervals contained the null after further adjustment for African American/Black population density (p = 0.16), suggesting that race is more indicative of high rates of PTB than poverty. In conclusion, Pb was found in every hair sample collected from SF neighborhoods. The highest concentrations were found in predominately African American/Black and high poverty neighborhoods, necessitating public health guidelines to eliminate this environmental injustice
Geospatial Distributions of Lead Levels Found in Human Hair and Preterm Birth in San Francisco Neighborhoods.
In San Francisco (SF), many environmental factors drive the unequal burden of preterm birth outcomes for communities of color. Here, we examine the association between human exposure to lead (Pb) and preterm birth (PTB) in 19 racially diverse SF zip codes. Pb concentrations were measured in 109 hair samples donated by 72 salons and barbershops in 2018-2019. Multi-method data collection included randomly selecting hair salons stratified by zip code, administering demographic surveys, and measuring Pb in hair samples as a biomarker of environmental exposure to heavy metals. Concentrations of Pb were measured by atomic emission spectrometry. Aggregate neighborhood Pb levels were linked to PTB and demographic data using STATA 16 SE (StataCorp LLC, College Station, TX, USA). Pb varied by zip code (p < 0.001) and correlated with PTB (p < 0.01). Increases in unadjusted Pb concentration predicted an increase in PTB (β = 0.003; p < 0.001) and after adjusting for poverty (β = 0.002; p < 0.001). Confidence intervals contained the null after further adjustment for African American/Black population density (p = 0.16), suggesting that race is more indicative of high rates of PTB than poverty. In conclusion, Pb was found in every hair sample collected from SF neighborhoods. The highest concentrations were found in predominately African American/Black and high poverty neighborhoods, necessitating public health guidelines to eliminate this environmental injustice
Recommended from our members
The Influence of Microaffirmations on Undergraduate Persistence in Science Career Pathways
The present studies aimed to advance the measurement and understanding of microaffirmation kindness cues and assessed how they related to historically underrepresented (HU) and historically overrepresented (HO) undergraduate student persistence in science-related career pathways. Study 1 developed and tested the dimensionality of a new Microaffirmations Scale. Study 2 confirmed the two-factor structure of the Microaffirmations Scale and demonstrated that the scale possessed measurement invariance across HU and HO students. Further, the scale was administered as part of a longitudinal design spanning 9 months, with results showing that students' reported microaffirmations did not directly predict higher intentions to persist in science-related career pathways 9 months later. However, scientific self-efficacy and identity, measures of student integration into the science community, mediated this relationship. Overall, our results demonstrated that microaffirmations can be measured in an academic context and that these experiences have predictive value when they increase students' integration into their science communities, ultimately resulting in greater intentions to persist 9 months later. Researchers and practitioners can use the Microaffirmations Scale for future investigations to increase understanding of the positive contextual factors that can ultimately help reduce persistence gaps in science, technology, engineering, and mathematics degree attainment