20 research outputs found
Novos aspectos na evolução clÃnica da pitirÃase versicolor
FUNDAMENTO: A pitirÃase versicolor é uma doença infecciosa causada por várias espécies de Malassezia com uma tendência a se tornar recidivante ou crônica. OBJETIVOS: Este trabalho foi conduzido na tentativa de conhecer a evolução clÃnica da pitirÃase versicolor em relação ao número de recidivas após um tratamento adequado no perÃodo de 12 meses e correlacionar o número de recidivas com as espécies de Malassezia isoladas. MATERIAL E MÉTODOS: Cento e dois pacientes com diagnóstico clÃnico e laboratorial de pitirÃase versicolor foram acompanhados por um perÃodo de 12 meses para observarmos o número de recidivas da doença. RESULTADOS: A pitirÃase versicolor, após um tratamento adequado, apresentou três tipos de evolução clÃnica num perÃodo de 12 meses: pitirÃase versicolor sem nenhum episódio de recidiva (32,35%); pitirÃase versicolor recidivante, com um a quatro episódios de recidiva (52,94%) devidos a fatores de predisposição relacionados; e pitirÃase versicolor crônica, com mais de quatro episódios de recidiva (14,70%) sem nenhuma relação com fatores de predisposição. CONCLUSÕES: A pitirÃase versicolor apresentou uma evolução clÃnica de acordo com o número de episódios de recidiva da doença analisados durante um perÃodo de 12 meses que pode ser considerada da seguinte maneira: pitirÃase versicolor com cura clÃnica e micológica, pitirÃase versicolor recidivante e pitirÃase versicolor crônica
Population genetic analysis reveals a high genetic diversity in the Brazilian Cryptococcus gattii VGII Pppulation and shifts the global origin from the Amazon Rainforest to the semi-arid desert in the Northeast of Brazil
Submitted by Fábio Marques ([email protected]) on 2018-09-17T18:52:21Z
No. of bitstreams: 1
Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus_Marcelo_Alves_etal_INI_Lapclin_2016.PDF: 2734374 bytes, checksum: 22e034c2ef566de6a2fcb77aed96c5d3 (MD5)Approved for entry into archive by Regina Costa ([email protected]) on 2018-09-27T18:24:21Z (GMT) No. of bitstreams: 1
Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus_Marcelo_Alves_etal_INI_Lapclin_2016.PDF: 2734374 bytes, checksum: 22e034c2ef566de6a2fcb77aed96c5d3 (MD5)Made available in DSpace on 2018-09-27T18:24:21Z (GMT). No. of bitstreams: 1
Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus_Marcelo_Alves_etal_INI_Lapclin_2016.PDF: 2734374 bytes, checksum: 22e034c2ef566de6a2fcb77aed96c5d3 (MD5)
Previous issue date: 2016Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Institute Adolfo Lutz. São Paulo, SP, Brazil.Molecular Mycology Research Laboratory. Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity. Sydney Medical School-Westmead Hospital. The University of Sydney. The Westmead Institute for Medical Research. Sydney, Australia / Infectious Disease Department. Triângulo Mineiro Federal University. Uberaba, MG, Brazil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Molecular Mycology Research Laboratory. Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Sydney Medical School-Westmead Hospital, The University of Sydney, The Westmead Institute for Medical Research. Sydney, Australia.Institute Adolfo Lutz, São Paulo, SP, Brazil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa ClÃnica em DST/AIDS. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention, Atlanta, USA.University of Piauà State. Teresina, PI, Brazil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Molecular Mycology Research Laboratory. Centre for Infectious Diseases and Microbiology. Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity. Sydney Medical School-Westmead Hospital. The University of Sydney. The Westmead Institute for Medical Research. Sydney, Australia / Federal University of Pará. Belém, PA, Brazil.Federal University of Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Institute Adolfo Lutz. São Paulo, SP, Brazil.Biodiversity Research Center. Federal University of Roraima. Boa Vista, RR, Brazil.Centers for Disease Control and Prevention. Atlanta, USA.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Institute Adolfo Lutz. São Paulo, SP, Brazil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Molecular Mycology Research Laboratory. Centre for Infectious Diseases and Microbiology. Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity. Sydney Medical School-Westmead Hospital. The University of Sydney. The Westmead Institute for Medical Research. Sydney, Australia.Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence
PitirÃase versicolor: isolamento e identificação das principais espécies de Malassezia Pityriasis versicolor: isolation and identification of the main species
As espécies do gênero Malassezia isoladas foram: Malassezia sympodialis (16,66%), Malassezia furfur (12,50%), Malassezia globosa (11,45%) e Malassezia slooffiae (2,10%). A Malassezia sympodialis foi a espécie que predominou em nosso estudo. As espécies de Malassezia identificadas não mostraram correlação com as variantes clÃnicas e com a distribuição das lesões de pitirÃase versicolor quanto à s regiões do corpo.<br>Species of the genus Malassezia isolated were: Malassezia sympodialis (16.66%), Malassezia furfur (12.50%), Malassezia globosa (11.45%), and Malassezia slooffiae (2.10%). Malassezia sympodialis predominated in the study. The species of Malassezia identified did not show correlation with clinical variants and with the distribution of pityriasis versicolor lesions in relation to areas of the body
Minimum spanning tree using the goeBURST algorithm.
<p><b>(A)</b> Minimum spanning tree using the goeBURST algorithm showing the high diversity identified among the 145 Brazilian <i>Cryptococcus gattii</i> VGII isolates and nine Brazilian sequence types (ST) according to the state where they were recovered. Dividing the country in two macro regions such as North (composing of the States of Amazonas, Roraima, Pará, PiauÃ, and Bahia) and South (States of Mato Grosso do Sul, São Paulo, and Rio de Janeiro) three main groups can be identified: 1) isolates mainly recovered from the South, representing all isolates derived from the ST301; 2) isolates mainly recovered from the North, representing those originated from the ST7 (VGIIb), and 3) the mixed group, which contains isolates derived from ST281. The main clonal complexes (CC) in each of these groups are: CC40, CC5, and CC20. The ancestors of the CC is highlighted by a black line. <b>(B)</b> Minimum spanning tree using the goeBURST algorithm of the isolates presented in (<b>A)</b>, and their comparison with 42 STs identified in different countries previously published. All country abbreviations are designated according to the alpha-2 code of ISO 3166–1. In both figures each circle represents a unique ST, and the circumference is proportional to the number of isolates within each ST. Solid, grey and dashed branches represent at least one, two to three, and more than four or five differences, respectively. All STs are different VGII lineages, only the three PNW outbreak genotypes are labelled specifically as VGIIa (ST20), VGIIb (ST7), and VGIIc (ST6).</p
Number of populations using in the STRUCTURE analysis calculated according to [35].
<p>The results presenting in (A) show three populations in the Brazilian <i>Cryptococcus gattii</i> VGII and in (B) show four populations in the STs identified in different countries previously published and in Brazil.</p
Split decomposition analysis using the Neighbor-net algorithm of the each of seven MLST genes evidencing the diversity and branching ambiguities attributable to recombination events in the <i>CAP59</i> and <i>SOD1</i>.
<p>The phi test result implemented in the software SplitsTree is presented next to each allele.</p
Characteristics of the studied Brazilian regions.
<p>Characteristics of the studied Brazilian regions.</p
Population structure analysis inferred using multilocus sequence genotypes of <i>Cryptococcus gattii</i> isolates recovered from Brazil and using <i>K</i> = 3 (A), and comparison of these isolates with isolates recovered from different continents using <i>K</i> = 4 (B).
<p>Clusters of individuals based on prior-defined populations are referred according to the Brazilian States and/or Continent. Each vertical line represents one of the isolates included and each color (red, dark blue, dark green, and yellow) represents the most likely ancestry of each isolate from one of the three populations (A) or four populations (B). Individuals with multiple colours have admixed genotypes from the prior-defined populations. One clone per region was included, thus Figure A contains 100 isolates while Figure B contain 125 isolates. The taxa nomenclature includes AM: Amazonas, PA: Pará, PI: PiauÃ, RR: Roraima, BA: Bahia, ES: EspÃrito Santo, RJ: Rio de Janeiro, MS: Mato Grosso do Sul, AS: Asia, AU: Australia, AF: Africa, SA: South America, NA: North America, EU: Europe.</p
Linkage disequilibrium heat maps between polymorphic sites for all studied MLST loci (<i>CAP59</i>, <i>GPD1</i>, <i>PLB1</i>, <i>SOD1</i>, IGS1, <i>LAC1</i> and <i>URA5</i>).
<p>Pairwise D’ metricises are represented by heat colours (Colour Key). Recombination amongst Brazilian VGII strains has been shown, as evidenced amongst four sites (0.7%) in the locus <i>CAP59</i> and six sites (0.8%) in the locus <i>SOD1</i> (Fisher’s Exact Test P-value ≤ 0.05).</p