240 research outputs found

    Evidence for Different Freeze-Out Radii of High- and Low-Energy Pions Emitted in Au+Au Collisions at 1 GeV/nucleon

    Full text link
    Double differential production cross sections of negative and positive pions and the number of participating protons have been measured in central Au+Au collisions at 1 GeV per nucleon incident energy. At low pion energies the pi^- yield is strongly enhanced over the pi^+ yield. The energy dependence of the pi^-/pi^+ ratio is assigned to the Coulomb interaction of the charged pions with the protons in the reaction zone. The deduced Coulomb potential increases with increasing pion c.m. energy. This behavior indicates different freeze-out radii for different pion energies in the c.m.~frame.Comment: IKDA is the Institute for Nuclear Physics in Darmstadt/German

    On the exact conservation laws in thermal models and the analysis of AGS and SIS experimental results

    Get PDF
    The production of hadrons in relativistic heavy ion collisions is studied using a statistical ensemble with thermal and chemical equilibrium. Special attention is given to exact conservation laws, i.e. certain charges are treated canonically instead of using the usual grand canonical approach. For small systems, the exact conservation of baryon number, strangeness and electric charge is to be taken into account. We have derived compact, analytical expressions for particle abundances in such ensemble. As an application, the change in K/πK/\pi ratios in AGS experiments with different interaction system sizes is well reproduced. The canonical treatment of three charges becomes impractical very quickly with increasing system size. Thus, we draw our attention to exact conservation of strangeness, and treat baryon number and electric charge grand canonically. We present expressions for particle abundances in such ensemble as well, and apply them to reproduce the large variety of particle ratios in GSI SIS 2 A GeV Ni-Ni experiments. At the energies considered here, the exact strangeness conservation fully accounts for strange particle suppression, and no extra chemical factor is needed.Comment: Talk given at Strangeness in Quark Matter '98, Padova, Italy (1998). Submitted to J.Phys. G. 5 pages, 2 figure

    Influence of the in-medium pion dispersion relation in heavy ion collisions

    Full text link
    We investigate the influence of medium corrections to the pion dispersion relation on the pion dynamics in intermediate energy heavy ion collisions. To do so a pion potential is extracted from the in-medium dispersion relation and used in QMD calculations and thus we take care of both, real and imaginary part of the pion optical potential. The potentials are determined from different sources, i.e. from the Δ\Delta--hole model and from phenomenological approaches. Depending on the strength of the potential a reduction of the anti-correlation of pion and nucleon flow in non-central collisions is observed as well as an enhancement of the high energetic yield in transverse pion spectra. A comparison to experiments, in particular to ptp_t-spectra for the reaction Ca+Ca at 1 GeV/nucleon and the pion in-plane flow in Ne+Pb collisions at 800 MeV/nucleon, generally favours a weak potential.Comment: 25 pages, using REVTeX, 6 postscript figures; replaced by published versio

    Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system

    Full text link
    We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with NN, Δ\Delta and π\pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free πNΔ\pi N \to \Delta cross section is in agreement with the experimental data. Medium effects on the πNΔ\pi N \to \Delta cross section and momentum-dependent Δ\Delta-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.

    Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS

    Get PDF
    Attention is drawn to the role played by the size of the system in the thermodynamic analysis of particle yields in relativistic heavy ion collisions at SIS energies. This manifests itself in the non-linear dependence of K+ and K- yields in AAAA collisions at 1 -- 2 A.GeV on the number of participants. It is shown that this dependence can be quantitatively well described in terms of a thermal model with a canonical strangeness conservation. The measured particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also explained in the context of a thermal model with a common freeze-out temperature and chemical potential. Including the concept of collective flow a consistent picture of particle energy distributions is derived with the flow velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure

    Production of Sigma{\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    Full text link
    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.Comment: 15 pages, 5 figure

    An upper limit on hypertriton production in collisions of Ar(1.76 AGeV)+KCl

    Full text link
    A high-statistic data sample of Ar(1.76 AGeV)+KCl events recorded with HADES is used to search for a hypertriton signal. An upper production limit per centrality-triggered event of 1.041.04 x 10310^{-3} on the 3σ3\sigma level is derived. Comparing this value with the number of successfully reconstructed Λ\Lambda hyperons allows to determine an upper limit on the ratio NΛ3H/NΛN_{_{\Lambda}^3H}/N_{\Lambda}, which is confronted with statistical and coalescence-type model calculations

    In-Medium Effects on K0 Mesons in Relativistic Heavy-Ion Collisions

    Full text link
    We present the transverse momentum spectra and rapidity distributions of π\pi^{-} and KS0^0_S in Ar+KCl reactions at a beam kinetic energy of 1.756 A GeV measured with the spectrometer HADES. The reconstructed KS0^0_S sample is characterized by good event statistics for a wide range in momentum and rapidity. We compare the experimental π\pi^{-} and KS0^0_S distributions to predictions by the IQMD model. The model calculations show that KS0^0_S at low tranverse momenta constitute a particularly well suited tool to investigate the kaon in-medium potential. Our KS0^0_S data suggest a strong repulsive in-medium K0^0 potential of about 40 MeV strength.Comment: 10 pages, 10 figures, accepted by Phys. Rev.

    The Λp\bf{\Lambda p} interaction studied via femtoscopy in p + Nb reactions at sNN=3.18 GeV\mathbf{\sqrt{s_{NN}}=3.18} ~\mathrm{\bf{GeV}}

    Full text link
    We report on the first measurement of pΛp\Lambda and pppp correlations via the femtoscopy method in p+Nb reactions at sNN=3.18 GeV\mathrm{\sqrt{s_{NN}}=3.18} ~\mathrm{GeV}, studied with the High Acceptance Di-Electron Spectrometer (HADES). By comparing the experimental correlation function to model calculations, a source size for pppp pairs of r0,pp=2.02±0.01(stat)0.12+0.11(sys) fmr_{0,pp}=2.02 \pm 0.01(\mathrm{stat})^{+0.11}_{-0.12} (\mathrm{sys}) ~\mathrm{fm} and a slightly smaller value for pΛp\Lambda of r0,Λp=1.62±0.02(stat)0.08+0.19(sys) fmr_{0,\Lambda p}=1.62 \pm 0.02(\mathrm{stat})^{+0.19}_{-0.08}(\mathrm{sys}) ~\mathrm{fm} is extracted. Using the geometrical extent of the particle emitting region, determined experimentally with pppp correlations as reference together with a source function from a transport model, it is possible to study different sets of scattering parameters. The pΛp\Lambda correlation is proven sensitive to predicted scattering length values from chiral effective field theory. We demonstrate that the femtoscopy technique can be used as valid alternative to the analysis of scattering data to study the hyperon-nucleon interaction.Comment: 12 pages, 11 figure
    corecore