42,650 research outputs found

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Performance of a First-Level Muon Trigger with High Momentum Resolution Based on the ATLAS MDT Chambers for HL-LHC

    Full text link
    Highly selective first-level triggers are essential to exploit the full physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The concept for a new muon trigger stage using the precision monitored drift tube (MDT) chambers to significantly improve the selectivity of the first-level muon trigger is presented. It is based on fast track reconstruction in all three layers of the existing MDT chambers, made possible by an extension of the first-level trigger latency to six microseconds and a new MDT read-out electronics required for the higher overall trigger rates at the HL-LHC. Data from pppp-collisions at s=8TeV\sqrt{s} = 8\,\mathrm{TeV} is used to study the minimal muon transverse momentum resolution that can be obtained using the MDT precision chambers, and to estimate the resolution and efficiency of the MDT-based trigger. A resolution of better than 4.1%4.1\% is found in all sectors under study. With this resolution, a first-level trigger with a threshold of 18GeV18\,\mathrm{GeV} becomes fully efficient for muons with a transverse momentum above 24GeV24\,\mathrm{GeV} in the barrel, and above 20GeV20\,\mathrm{GeV} in the end-cap region.Comment: 6 pages, 11 figures; conference proceedings for IEEE NSS & MIC conference, San Diego, 201

    Controlled splitting of an atomic wave packet

    Get PDF
    We propose a simple scheme capable of adiabatically splitting an atomic wave packet using two independent translating traps. Implemented with optical dipole traps, our scheme allows a high degree of flexibility for atom interferometry arrangements and highlights its potential as an efficient and high fidelity atom optical beam splitter.Comment: 4 pages, 4 figures. Accepted by Phys. Rev. Let

    Flows on scales of 150 Mpc?

    Get PDF
    We investigate the reality of large-scale streaming on scales of up to 150 Mpc using the peculiar motions of galaxies in three directions. New R-band CCD photometry and spectroscopy for elliptical galaxies is used. The Fundamental Plane distance indicator is calibrated using the Coma cluster and an inhomogeneous Malmquist bias correction is applied. A linear bulk-flow model is fitted to the peculiar velocities in the sample regions and the results do not reflect the bulk flow observed by Lauer and Postman (LP). Accounting for the difference in geometry between the galaxy distribution in the three regions and the LP clustersconfirms the disagreement; assuming a low-density CDM power spectrum, we find that the observed bulk flow of the galaxies in our sample excludes the LP bulk flow at the 99.8% confidence level.Comment: 16 pages, 1 figur

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    Treponema denticola in Disseminating Endodontic Infections

    Get PDF
    Treponema denticola is a consensus periodontal pathogen that has recently been associated with endodontic pathology. In this study, the effect of mono-infection of the dental pulp with T. denticola and with polymicrobial “red-complex” organisms (RC) (Porphyromonas gingivalis, Tannerella forsythia, and T. denticola) in inducing disseminating infections in wild-type (WT) and severe-combined-immunodeficiency (SCID) mice was analyzed. After 21 days, a high incidence (5/10) of orofacial abscesses was observed in SCID mice mono-infected with T. denticola, whereas abscesses were rare in SCID mice infected with the red-complex organisms or in wildtype mice. Splenomegaly was present in all groups, but only mono-infected SCID mice had weight loss. T. denticola DNA was detected in the spleen, heart, and brain of mono-infected SCID mice and in the spleen from mono-infected wild-type mice, which also had more periapical bone resorption. The results indicate that T. denticola has high pathogenicity, including dissemination to distant organs, further substantiating its potential importance in oral and linked systemic conditions

    Accurate simulation estimates of cloud points of polydisperse fluids

    Full text link
    We describe two distinct approaches to obtaining cloud point densities and coexistence properties of polydisperse fluid mixtures by Monte Carlo simulation within the grand canonical ensemble. The first method determines the chemical potential distribution μ(σ)\mu(\sigma) (with σ\sigma the polydisperse attribute) under the constraint that the ensemble average of the particle density distribution ρ(σ)\rho(\sigma) matches a prescribed parent form. Within the region of phase coexistence (delineated by the cloud curve) this leads to a distribution of the fluctuating overall particle density n, p(n), that necessarily has unequal peak weights in order to satisfy a generalized lever rule. A theoretical analysis shows that as a consequence, finite-size corrections to estimates of coexistence properties are power laws in the system size. The second method assigns μ(σ)\mu(\sigma) such that an equal peak weight criterion is satisfied for p(n)forallpointswithinthecoexistenceregion.However,sinceequalvolumesofthecoexistingphasescannotsatisfytheleverrulefortheprescribedparent,theirrelativecontributionsmustbeweightedappropriatelywhendetermining for all points within the coexistence region. However, since equal volumes of the coexisting phases cannot satisfy the lever rule for the prescribed parent, their relative contributions must be weighted appropriately when determining \mu(\sigma)$. We show how to ascertain the requisite weight factor operationally. A theoretical analysis of the second method suggests that it leads to finite-size corrections to estimates of coexistence properties which are {\em exponentially small} in the system size. The scaling predictions for both methods are tested via Monte Carlo simulations of a novel polydisperse lattice gas model near its cloud curve, the results showing excellent quantitative agreement with the theory.Comment: 8 pages, 6 figure
    corecore