3,457 research outputs found

    Comment on "Density of States and Critical Behavior of the Coulomb Glass"

    Full text link
    In a recent numerical investigation of the Coulomb glass, Surer et al. [Phys. Rev. Lett. 102, 067205 (2009)] concluded that their simulation results are consistent with the Efros Shklovskii prediction for the density of states in the three-dimensional case. Here, we show that this statement has no relevance concerning the problem of the asymptotic behavior in the Coulomb gap since it is based on unjustified assumptions. Moreover, for the random-displacement Coulomb glass model, we demonstrate that a part of the density of states data by Surer et al. erroneously exhibit a broad gap. This is related to the staggered occupation being instable contrary to their findings.Comment: Submitted to Physical Review Letters, 1 page, 1 figur

    Non-ergodic effects in the Coulomb glass: specific heat

    Full text link
    We present a numerical method for the investigation of non-ergodic effects in the Coulomb glass. For that, an almost complete set of low-energy many-particle states is obtained by a new algorithm. The dynamics of the sample is mapped to the graph formed by the relevant transitions between these states, that means by transitions with rates larger than the inverse of the duration of the measurement. The formation of isolated clusters in the graph indicates non-ergodicity. We analyze the connectivity of this graph in dependence on temperature, duration of measurement, degree of disorder, and dimensionality, studying how non-ergodicity is reflected in the specific heat.Comment: Submited Phys. Rev.

    Physical aspects of chromatin constituents

    Get PDF

    The Optosystem: validation and testing of the high-speed optical-to-electrical conversion system for the readout of the ATLAS ITk Pixel upgrade

    Full text link
    After Run III the ATLAS detector will undergo a series of upgrades to cope with the harsher radiation environment and increased number of proton interactions in the High Luminosity-LHC. One of the key projects in this suite of upgrades is the ATLAS Inner Tracker (ITk). The pixel detector of the ITk must be read out accurately and with extremely high rate. The Optosystem performs optical-to-electrical conversion of signals from the pixel modules. This paper presents recent results related to the performance of the data transmission chain pivoted on the Optoboards and to the design, testing and production of the Optopanels.Comment: Topical Workshop on Electronics for Particle Physics 2023, 1 October 2023 to 6 October 2023, Geremeas, Sardini

    Source of entangled atom pairs on demand, using the Rydberg blockade

    Full text link
    Two ultracold atom clouds, each separately in a dipole-blockade regime, realize a source of entangled atom pairs that can be ejected on demand. Entanglement generation and ejection is due to resonant dipole-dipole interactions, while van-der-Waals interactions are predominantly responsible for the blockade that ensures the ejection of a single atom per cloud. A source of entangled atoms using these effects can operate with a 10 kHz repetition rate producing ejected atoms with velocities of about 0.5 m/s.Comment: 7 pages, 4 figure

    Rate Dependence and Role of Disorder in Linearly Sheared Two-Dimensional Foams

    Full text link
    The shear flow of two dimensional foams is probed as a function of shear rate and disorder. Disordered foams exhibit strongly rate dependent velocity profiles, whereas ordered foams show rate independence. Both behaviors are captured quantitatively in a simple model based on the balance of the time-averaged drag forces in the foam, which are found to exhibit power-law scaling with the foam velocity and strain rate. Disorder modifies the scaling of the averaged inter-bubble drag forces, which in turn causes the observed rate dependence in disordered foams.Comment: 4 Figures, 4 page
    • …
    corecore