18 research outputs found

    Negative muon spin rotation and relaxation on superconducting MgB2

    Get PDF
    The internal nuclear magnetic field in a superconducting MgB2 powder sample was studied with a μ- SR technique. Although the past μ +SR study on MgB2 reported the appearance of a dynamic behavior even below Tc due to μ + diffusion, μ- SR shows a static behavior in the whole temperature range measured, as expected. The ZF-μ- SR spectra do not suggest any appearance of additional magnetic field below Tc within the experimental accuracy. Considering the small asymmetry of the μ- SR signal, it is a challenge to detect the appearance of an internal magnetic field below Tc caused by the time reversal symmetry breaking

    Search for a space charge layer in thin film battery materials with low-energy muons

    Get PDF
    In an all solid state Li-ion battery, it is crucial to reduce ionic resistivity at the interface between the electrode and the electrolyte in order to enhance Li+ mobility across the interface. Recent first principles calculations predict the presence of a space-charge layer (SCL) at the interface due to the difference in the Li+ chemical potential at the interface between two different materials, as in the metal-semiconductor junction in electronic devices. However, the presence of SCL has never been experimentally observed. Our first attempt in a fresh multilayer sample, Cu(10 nm)/Li3PO4(50 nm)/LiCoO2(100 nm) on a sapphire substrate, with low-energy μ +SR (LE μ +SR) revealed a gradual change in the nuclear magnetic field distribution width as a function of implantation depth even across the interface between Li3PO4 and LiCoO2. This implies that the change in the field distribution width at SCL of the sample is too small to be detected by LE μ +SR

    Confirming the high pressure phase diagram of the Shastry-Sutherland model

    Get PDF
    A Muon Spin Rotation (μ + SR) study was conducted to investigate the magnetic properties of SrCu2(BO3)2 (SCBO) as a function of temperature/pressure. Measurements in zero field and transverse field confirm the absence of long range magnetic order at high pressures and low temperatures. These measurements suggest changes in the Cu spin fluctuations characteristics above 21 kbar, consistent with the formation of a plaquette phase as previously suggested by inelastic neutron scattering measurements. SCBO is the only known realisation of the Shatry-Sutherland model, thus the ground state mediating the dimer and antiferromagnetic phase is likekly to be a plaquette state

    Honeycomb layered oxides: Structure, energy storage, transport, topology and relevant insights

    Get PDF
    The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials. This journal i

    Pressure dependence of ferromagnetic phase boundary in BaVSe3 studied with high-pressure μ+SR

    Get PDF
    The magnetic nature of a quasi-one-dimensional compound, BaVSe3, has been investigated with positive muon spin rotation and relaxation (μ+SR) measurements at ambient and high pressures. At ambient pressure, the μ+SR spectrum recorded under zero external magnetic field exhibited a clear oscillation below the Curie temperature (TC∼41K) due to the formation of quasistatic ferromagnetic order. The oscillation consisted of two different muon spin precession signals, indicating the presence of two magnetically different muon sites in the lattice. However, the two precession frequencies, which correspond to the internal magnetic fields at the two muon sites, could not be adequately explained with relatively simple ferromagnetic structures using the muon sites predicted by density functional theory calculations. The detailed analysis of the internal magnetic field suggested that the V moments align ferromagnetically along the c axis but slightly canted toward the a axis by 28 that is coupled antiferromagnetically. The ordered V moment (MV) is estimated as (0.59, 0, 1.11) μB. As pressure increased from ambient pressure, TC was found to decrease slightly up to about 1.5 GPa, at which point TC started to increase rapidly with the further increase of the pressure. Based on a strong ferromagnetic interaction along the c axis, the high-pressure μ+SR result revealed that there are two magnetic interactions in the ab plane; one is an antiferromagnetic interaction that is enhanced with pressure, mainly at pressures below 1.5 GPa, while the other is a ferromagnetic interaction that becomes predominant at pressures above 1.5 GPa

    Pressure driven magnetic order in Sr 1-x Ca x Co 2 P 2

    Get PDF
    The magnetic phase diagram of Sr1-xCaxCo2P2 as a function of hydrostatic pressure and temperature is investigated by means of high pressure muon spin rotation, relaxation and resonance (μ+SR). The weak pressure dependence for the x≠ 1 compounds suggests that the rich phase diagram of Sr1-xCaxCo2P2 as a function of x at ambient pressure may not solely be attributed to chemical pressure effects. The x= 1 compound on the other hand reveals a high pressure dependence, where the long range magnetic order is fully suppressed at pc 2≈ 9.8 kbar, which seem to be a first order transition. In addition, an intermediate phase consisting of magnetic domains is formed above pc 1≈ 8 kbar where they co-exist with a magnetically disordered state. These domains are likely to be ferromagnetic islands (FMI) and consist of an high- (FMI-1) and low-temperature (FMI-2) region, respectively, separated by a phase boundary at Ti≈ 20 K. This kind of co-existence is unusual and is originating from a coupling between lattice and magnetic degrees of freedoms

    Cation Distributions and Magnetic Properties of Ferrispinel MgFeMnO4

    Get PDF
    The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3\uaf m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices

    Competition between magnetic interactions and structural instabilities leading to itinerant frustration in the triangular lattice antiferromagnet LiCrSe2

    Get PDF
    LiCrSe2 constitutes a recent valuable addition to the ensemble of two-dimensional triangular lattice antiferromagnets. In this work, we present a comprehensive study of the low temperature nuclear and magnetic structure established in this material. Being subject to a strong magnetoelastic coupling, LiCrSe2 was found to undergo a first order structural transition from a trigonal crystal system (P3 \uaf m1) to a monoclinic one (C2/m) at T s = 30 K. Such restructuring of the lattice is accompanied by a magnetic transition at T N = 30 K. Refinement of the magnetic structure with neutron diffraction data and complementary muon spin rotation analysis reveal the presence of a complex incommensurate magnetic structure with a up-up-down-down arrangement of the chromium moments with ferromagnetic double chains coupled antiferromagnetically. The spin axial vector is also modulated both in direction and modulus, resulting in a spin density wave-like order with periodic suppression of the chromium moment along the chains. This behavior is believed to appear as a result of strong competition between direct exchange antiferromagnetic and superexchange ferromagnetic couplings established between both nearest neighbor and next nearest neighbor Cr3+ ions. We finally conjecture that the resulting magnetic order is stabilized via subtle vacancy/charge order within the lithium layers, potentially causing a mix of two co-existing magnetic phases within the sample

    Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4

    Get PDF
    Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic “kinks”—sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment. Our starting point is La1.88Sr0.12CuO4 where transverse kink ordering results in a rotation of stripe order away from the crystal axis. Application of mild uniaxial pressure changes the ordering pattern and pins the stripe order to the crystal axis. This reordering occurs at a much weaker pressure than that to detwin the stripe domains and suggests a rather weak transverse stripe stiffness. Weak spatial stiffness and transverse quantum fluctuations are likely key prerequisites for stripes to coexist with superconductivity

    Influence of the magnetic sublattices in the double perovskite LaCaNiReO6

    Get PDF
    The magnetism of double perovskites is a complex phenomenon, determined from intra- or interatomic magnetic moment interactions, and strongly influenced by geometry. We take advantage of the complementary length and timescales of the muon spin rotation, relaxation, and resonance (μ+SR) microscopic technique and bulk ac/dc magnetic susceptibility measurements to study the magnetic phases of the LaCaNiReO6 double perovskite. As a result, we are able to discern and report ferrimagnetic ordering below TC=102K and the formation of different magnetic domains above TC. Between TC<T<270K, the following two magnetic environments appear, a dense spin region and a static-dilute spin region. The paramagnetic state is obtained only above T>270K. An evolution of the interaction between Ni and Re magnetic sublattices, in this geometrically frustrated fcc perovskite structure, is revealed as a function of temperature through the critical behavior and thermal evolution of microscopic and macroscopic physical quantities
    corecore