975 research outputs found

    Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry

    Get PDF
    Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs (732 ± 28 cm−1) oscillations with a weak feature at 610–650 cm−1, while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670–720 cm−1. In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O–P–O bend and P–C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules

    Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry

    Get PDF
    Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs (732 ± 28 cm−1) oscillations with a weak feature at 610–650 cm−1, while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670–720 cm−1. In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O–P–O bend and P–C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules

    Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation

    Get PDF
    2-Nitrotoluene (2-NT) is a good model for both photolabile protecting groups for organic synthesis and the military explosive 2,4,6-trinitrotoluene (TNT). In addition to the direct C−NO2 bond-cleavage reaction that initiates detonation in TNT, 2-NT undergoes an H atom attack reaction common to the photolabile 2-nitrobenzyl group, which forms the aci-nitro tautomer. In this work, femtosecond pump−probe measure- ments with mass spectrometric detection and density functional theory (DFT) calculations demonstrate that the initially prepared vibrational coherence in the 2-NT radical cation (2- NT+) is preserved following H atom attack. Strong-field adiabatic ionization is used to prepare 2-NT+, which can overcome a modest 0.76 eV energy barrier to H atom attack to form the aci-nitro tautomer as soon as ∼20−60 fs after ionization. Once formed, the aci-nitro tautomer spontaneously loses −OH to form C7H6NO+, which exhibits distinctly faster oscillations in its ion yield (290 fs period) as compared to the 2-NT+ ion (380 fs period). The fast oscillations are attributed to the coherent torsional motion of the aci-nitro tautomer, which has a significantly faster computed torsional frequency (86.9 cm−1) than the 2- NT+ ion (47.9 cm−1). Additional DFT calculations identify reaction pathways leading to the formation of the dissociation products C7H6NO+, C7H7+, and C6H6N+. Collectively, these results reveal a rich picture of coherently and incoherently driven dissociation pathways in 2-NT+

    Zinc Oxide Random Laser Threshold Enhancement via Addition of Passive Scatterers

    Get PDF
    Zinc oxide (ZnO) is a wide bandgap n-type semiconductor with a variety of optical and electrical applications and many methods of fabrication. Strong optical scattering and photoluminescence from ZnO nanoparticles and films makes the material an ideal candidate for a random laser. Previous studies have shown both incoherent and coherent random lasing from ZnO films and particles agglomerations. When used as a passive scatterer in a laser dye gain medium, the addition of ZnO has been shown to improve the threshold for lasing. By combining active scattering ZnO with a passive scatterer, MgO, we show here that the lasing threshold is reduced. We also demonstrate strong optical feedback in laser pumped ZnO nanoparticle films. Photoluminescence (PL) results show a clear amplification threshold and the resulting non-linear behavior. We find that shortening the pump pulse time by a factor 6 causes a feedback mechanism transition from Amplified Spontaneous Emission (ASE) to Non-resonant feedback (NRF). The pulse time is still longer than the excitonic lifetime (~200 ps), however the randomness from spontaneous emission is greatly reduced. NRF in our samples can be characterized by a dramatic narrowing of the photoluminescence peak around 387 nm to FWHM of ~3 nm, as well as a high degree of reproducibility in the emitted spectra. A new statistical model for the generation of random laser modes was formulated and it reproduces the experimental results. Further work will focus on studying the transition from non-resonant to resonant feedback in the nanoparticle films

    Improved process for epitaxial deposition of silicon on prediffused substrates

    Get PDF
    Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction

    X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides

    Full text link
    X-ray resonant scattering at the K-edge of transition metal oxides is shown to measure the orbital order parameter, supposed to accompany magnetic ordering in some cases. Virtual transitions to the 3d-orbitals are quadrupolar in general. In cases with no inversion symmetry, such as V2_2O3_3, treated in detail here, a dipole component enhances the resonance. Hence, we argue that the detailed structure of orbital order in V2_2O3_3 is experimentally accessible.Comment: LaTex using RevTex, 4 pages and two included postscript figure

    Theory for Phase Transitions in Insulating Vanadium Oxide

    Full text link
    We show that the recently proposed S=2 bond model with orbital degrees of freedom for insulating V2_{2}O3_{3} not only explains the anomalous magnetic ordering, but also other mysteries of the magnetic phase transition. The model contains an additional orbital degree of freedom that exhibits a zero temperature quantum phase transtion in the Ising universality class.Comment: 5 pages, 2 figure

    Orbitally Degenerate Spin-1 Model for Insulating V2O3

    Full text link
    Motivated by recent neutron, X-ray absorption and resonant scattering experiments, we revisit the electronic structure of V2O3. We propose a model in which S=1 V3+ ions are coupled in the vertical V-V pairs forming two-fold orbitally degenerate configurations with S=2. Ferro-orbital ordering of the V-V pairs gives a description which is consistent with all experiments in the antiferromagnetic insulating phase.Comment: 4 pages, including three figure

    Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted.</p> <p>Results</p> <p>We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach.</p> <p>Conclusion</p> <p>Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.</p
    • …
    corecore