94 research outputs found

    Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    Get PDF
    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented

    Skylab water depth determination

    Get PDF
    There are no author-identified significant results in this report

    Nearshore coastal mapping

    Get PDF
    Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable

    Skylab remote bathymetry experiment

    Get PDF
    There are no author-identified significant results in this report

    SAR imagery of ocean-wave swell traveling in an arbitrary direction

    Get PDF
    The intensity wave like patterns observed in Synthetic Aperture Radar (SAR) are known to be caused by two mechanisms: the microwave radar cross sectional amplitude modulation due to tilt and hydrodynamic interaction of the long ocean waves, and intensity modulation due to the motion of the long ocean waves. Two dimensional closed form expressions of intensity wave patterns based on ocean wave swell are developed. They illustrate the relative importance of the amplitude and motion modulations; they also show that velocity bunching and a distortion due to the phase velocity of the ocean wave field are independent of the focus adjustment, provided that the second order temporal effects are neglected. Second order effects are small only over a limited range of ocean/radar parameters

    Remote bathymetry and shoal detection with ERTS: ERTS water depth

    Get PDF
    There are no author-identified significant results in this report

    Skylab: Water depth determination

    Get PDF
    There are no author-identified significant results in this report

    Modeling of SAR signatures of shallow water ocean topography

    Get PDF
    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present

    Exploitation of SAR data for measurement of ocean currents and wave velocities

    Get PDF
    Methods of extracting information on ocean currents and wave orbital velocities from SAR data by an analysis of the Doppler frequency content of the data are discussed. The theory and data analysis methods are discussed, and results are presented for both aircraft and satellite (SEASAT) data sets. A method of measuring the phase velocity of a gravity wave field is also described. This method uses the shift in position of the wave crests on two images generated from the same data set using two separate Doppler bands. Results of the current measurements are pesented for 11 aircraft data sets and 4 SEASAT data sets

    Evaluation of ERIM optically processed SEASAT SAR data

    Get PDF
    The results of three studies on the radiometric and geometric properties of optically processed SEASAT SAR imagery are summarized. The accuracy with which the image scale can be predicted based upon a knowledge of the SAR platform and recording system parameters and the processor characteristics was evaluated. The considerations involved in making radiometric measurements from image films, the use of point targets for calibrating the effects of Doppler spectrum shifts on the radiometric calibration of the SAR image data over extended swath lengths was evaluate
    corecore