20 research outputs found

    Specialist laboratory networks as preparedness and response tool - The emerging viral diseases-expert laboratory network and the chikungunya outbreak, Thailand, 2019

    Get PDF
    We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems

    The Baikal subtype of tick-borne encephalitis virus is evident of recombination between Siberian and Far-Eastern subtypes.

    No full text
    Tick-borne encephalitis virus (TBEV) is a flavivirus which causes an acute or sometimes chronic infection that frequently has severe neurological consequences, and is a major public health threat in Eurasia. TBEV is genetically classified into three distinct subtypes; however, at least one group of isolates, the Baikal subtype, also referred to as "886-84-like", challenges this classification. Baikal TBEV is a persistent group which has been repeatedly isolated from ticks and small mammals in the Buryat Republic, Irkutsk and Trans-Baikal regions of Russia for several decades. One case of meningoencephalitis with a lethal outcome caused by this subtype has been described in Mongolia in 2010. While recombination is frequent in Flaviviridae, its role in the evolution of TBEV has not been established. Here, we isolate and sequence four novel Baikal TBEV samples obtained in Eastern Siberia. Using a set of methods for inference of recombination events, including a newly developed phylogenetic method allowing for formal statistical testing for such events in the past, we find robust support for a difference in phylogenetic histories between genomic regions, indicating recombination at origin of the Baikal TBEV. This finding extends our understanding of the role of recombination in the evolution of this human pathogen

    Variable Major Proteins as Targets for Specific Antibodies against Borrelia miyamotoi

    No full text
    Borrelia miyamotoi is a relapsing fever spirochete in Ixodes ticks that has been recently identified as a human pathogen causing hard tick-borne relapsing fever (HTBRF) across the Northern Hemisphere. No validated serologic test exists, and current serologic assays have low sensitivity in early HTBRF. To examine the humoral immune response against B. miyamotoi, we infected C3H/HeN mice with B. miyamotoi strain LB-2001 expressing variable small protein 1 (Vsp1) and demonstrated that spirochetemia was cleared after 3 d, coinciding with anti-Vsp1 IgM production. Clearance was also observed after passive transfer of immune sera to infected SCID mice. Next, we showed that anti-Vsp1 IgG eliminates Vsp1-expressing B. miyamotoi, selecting for spirochetes expressing a variable large protein (VlpC2) resistant to anti-Vsp1. The viability of Asian isolate B. miyamotoi HT31, expressing Vlp15/16 and Vlp18, was also unaffected by anti-Vsp1. Finally, in nine HTBRF patients, we demonstrated IgM reactivity to Vsp1 in two and against Vlp15/16 in four ∼1 wk after these patients tested positive for B. miyamotoi by PCR. Our data show that B. miyamotoi is able to express various variable major proteins (VMPs) to evade humoral immunity and that VMPs are antigenic in humans. We propose that serologic tests based on VMPs are of additional value in diagnosing HTBR

    The First Case of Zika Virus Disease in Guinea: Description, Virus Isolation, Sequencing, and Seroprevalence in Local Population

    No full text
    The Zika virus (ZIKV) is a widespread mosquito-borne pathogen. Phylogenetically, two lineages of ZIKV are distinguished: African and Asian–American. The latter became the cause of the 2015–2016 pandemic, with severe consequences for newborns. In West African countries, the African lineage was found, but there is evidence of the emergence of the Asian–American lineage in Cape Verde and Angola. This highlights the need to not only monitor ZIKV but also sequence the isolates. In this article, we present a case report of Zika fever in a pregnant woman from Guinea identified in 2018. Viral RNA was detected through qRT-PCR in a serum sample. In addition, the seroconversion of anti-Zika IgM and IgG antibodies was detected in repeated blood samples. Subsequently, the virus was isolated from the C6/36 cell line. The detected ZIKV belonged to the African lineage, the Nigerian sublineage. The strains with the closest sequences were isolated from mosquitoes in Senegal in 2011 and 2015. In addition, we conducted the serological screening of 116 blood samples collected from patients presenting to the hospital of Faranah with fevers during the period 2018–2021. As a result, it was found that IgM-positive patients were identified each year and that the seroprevalence varied between 5.6% and 17.1%

    Integrated Jingmenvirus Polymerase Gene in <i>Ixodes ricinus</i> Genome

    No full text
    Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus

    Detection of Filoviruses in Bats in Vietnam

    No full text
    A new filovirus named Měnglà virus was found in bats in southern China in 2015. This species has been assigned to the new genus Dianlovirus and has only been detected in China. In this article, we report the detection of filoviruses in bats captured in Vietnam. We studied 248 bats of 15 species caught in the provinces of Lai Chau and Son La in northern Vietnam and in the province of Dong Thap in the southern part of the country. Filovirus RNA was found in four Rousettus leschenaultii and one Rousettus amplexicaudatus from Lai Chau Province. Phylogenetic analysis of the polymerase gene fragment showed that three positive samples belong to Dianlovirus, and two samples form a separate clade closer to Orthomarburgvirus. An enzyme-linked immunosorbent assay showed that 9% of Rousettus, 13% of Eonycteris, and 10% of Cynopterus bats had antibodies to the glycoprotein of marburgviruses

    Phylogenetic tree, distances, and alignment comparing the relationship of the MARV sequence of sample ERB-79 to other marburgviruses.

    No full text
    The sequences from Guinea generated during this study are indicated with asterisks. A: Maximum-likelihood tree (Tamura 3-parameter model with 1000 pseudoreplicates) of partial marburgvirus nucleoprotein gene fragments (92 bp). Scale bar indicates the mean number of nucleotide substitutions per site. The sequences in bold were used in the alignment presented below. The tree is midpoint rooted and the root position is verified by the Ravn virus (DQ447649) outgroup. B: Phylogenetic distances between sample ERB-79 and MARV sequences of different phylogenetic groups that were available in GenBank (35 sequences of Ozolin group, 8 sequences of Musoke group, 6 sequences of Angola-like ERB group, and 13 sequences of Angola human group). Distance is shown as the number of substitutions (on the 92 bp fragment of the NP gene). Solid line represents the median, box shows interquartile range (IQR), whiskers represent 1.5 × IQR, and the circles indicate outliers (values exceeded 1.5 × IQR). C: Aligned fragments (92 bp) of the MARV nucleoprotein gene with highlighted variable sites.</p
    corecore