15 research outputs found

    Shubnikov-de Haas oscillations spectrum of the strongly correlated quasi-2D organic metal (ET)8[Hg4Cl12(C6H5Br)]2 under pressure

    Full text link
    Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two di- mensional organic metal (ET)8[Hg4Cl12(C6H5Br)]2 have been studied up to 1.1 GPa in pulsed magnetic fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a network, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids. In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is observed as the applied pressure increases. This latter point, which is at variance with data of most charge transfer salts is discussed in connection with pressure-induced features of the temperature dependence of the zero-field interlayer resistanceComment: Eur. Phys. J. B, in pres

    Onsager phase factor of quantum oscillations in the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    Full text link
    De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating the Pippard's model, commonly observed in multiband organic metals. Field- and temperature-dependent amplitude of the various Fourier components, linked to frequency combinations arising from magnetic breakdown between different bands, are considered. Emphasis is put on the Onsager phase factor of these components. It is demonstrated that, in addition to the usual Maslov index, field-dependent phase factors must be considered to precisely account for the data at high magnetic field. We present compelling evidence of the existence of such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)

    Competing types of quantum oscillations in the 2D organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2

    Full text link
    Interlayer magnetoconductance of the quasi-two dimensional organic metal (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 has been investigated in pulsed magnetic fields extending up to 36 T and in the temperature range from 1.6 to 15 K. A complex oscillatory spectrum, built on linear combinations of three basic frequencies only is observed. These basic frequencies arise from the compensated closed hole and electron orbits and from the two orbits located in between. The field and temperature dependencies of the amplitude of the various oscillation series are studied within the framework of the coupled orbits model of Falicov and Stachowiak. This analysis reveals that these series result from the contribution of either conventional Shubnikov-de Haas effect (SdH) or quantum interference (QI), both of them being induced by magnetic breakthrough. Nevertheless, discrepancies between experimental and calculated parameters indicate that these phenomena alone cannot account for all of the data. Due to its low effective mass, one of the QI oscillation series - which corresponds to the whole first Brillouin zone area - is clearly observed up to 13 K.Comment: 8 pages, 8 figures. To be published in Phys. Rev.

    Temperature- and pressure-dependent metallic states in (BEDT-TTF)8[Hg4Br12(C6H5Br)2]

    Full text link
    Temperature-driven metal-insulator and pressure-driven insulator-metal transitions observed in(BEDT-TTF)8[Hg4X12(C6H5Y)2]] with X = Y = Br are studied through band structure calculations based on X-ray crystal structure determination and Shubnikov-de Haas (SdH) oscillations spectra, respectively. In connection with chemical pressure effect, the transition, which is not observed for X = Cl, is due to gap opening linked to structural changes as the temperature decreases. Even though many body interactions can be inferred from the pressure dependence of the SdH oscillations spectra, all the data can be described within a Fermi liquid picture

    Crystal structure, Fermi surface calculations and Shubnikov-de Haas oscillations spectrum of the organic metal Ξ\theta-(BETS)4_4HgBr4_4(C6_6H5_5Cl) at low temperature

    Full text link
    The organic metal \theta−(BETS)-(BETS)_4HgBrHgBr_4(C(C_6HH_5$Cl) is known to undergo a phase transition as the temperature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding modification of the crystal structure, the symmetry of which is lowered from quadratic to monoclinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi surface (FS), which can be regarded as a network of compensated electron and hole orbits according to band structure calculations at room temperature, turns to a set of two alternating linear chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which, in any case, points to a FS much more complex than predicted by band structure calculations at room temperature, even though some of the observed Fourier components might be ascribed to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an interaction between the FS's linked to each of the two cation layers or to an eventual additional phase transition in the temperature range below 200 K.Comment: accepted for publication in Solid State Science

    Effect of External Pressure on the Metal–Insulator Transition of the Organic Quasi-Two-Dimensional Metal K-(BEDT-TTF)2Hg(SCN)2Br

    No full text
    The metal–insulator transition in the organic quasi-two-dimensional metal Îș-(BEDT-TTF)2Hg(SCN)2Br at TMI ≈ 90 K has been investigated. The crystal structure changes during this transition from monoclinic above TMI to triclinic below TMI. A theoretical study suggested that this phase transition should be of the metal-to-metal type and brings about a substantial change of the Fermi surface. Apparently, the electronic system in the triclinic phase is unstable toward a Mott insulating state, leading to the growth of the resistance when the temperature drops below TMI ≈ 90 K. The application of external pressure suppresses the Mott transition and restores the metallic electronic structure of the triclinic phase. The observed quantum oscillations of the magnetoresistance are in good agreement with the calculated Fermi surface for the triclinic phase, providing a plausible explanation for the puzzling behavior of Îș-(BEDT-TTF)2Hg(SCN)2Br as a function of temperature and pressure around 100 K. The present study points out interesting differences in the structural and physical behaviors of the two room temperature isostructural salts of Îș-(BEDT-TTF)2Hg(SCN)2X with X = Br, Cl.The work at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry was carried out within the project of state assignment number AAAA-A19-119092390079-8. V.N.Z. acknowledges the support of the Russian Foundation for Basic Research No. 21-52-12027. The work in Spain was supported by the MICIU (Grant PGC2018-096955-B-C44) and Generalitat de Catalunya (2017SGR1506). E.C. acknowledges the support of the Spanish MICIU through the Severo Ochoa FUNFUTURE (CEX2019-000917-S) Excellence Center distinction.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore