5 research outputs found

    A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players

    Get PDF
    Pickering, C, Suraci, B, Semenova, EA, Boulygina, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Leońska-Duniec, A, Pająk, B, Chycki, J, Moska, W, Lulińska-Kuklik, E, Dornowski, M, Maszczyk, A, Bradley, B, Kana-ah, A, Cięszczyk, P, Generozov, EV, and Ahmetov, II. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res XX(X): 000-000, 2019-Sprint speed is an important component of football performance, with teams often placing a high value on sprint and acceleration ability. The aim of this study was to undertake the first genome-wide association study to identify genetic variants associated with sprint test performance in elite youth football players and to further validate the obtained results in additional studies. Using micro-array data (600 K-1.14 M single nucleotide polymorphisms [SNPs]) of 1,206 subjects, we identified 12 SNPs with suggestive significance after passing replication criteria. The polymorphism rs55743914 located in the PTPRK gene was found as the most significant for 5-m sprint test (p = 7.7 × 10). Seven of the discovered SNPs were also associated with sprint test performance in a cohort of 126 Polish women, and 4 were associated with power athlete status in a cohort of 399 elite Russian athletes. Six SNPs were associated with muscle fiber type in a cohort of 96 Russian subjects. We also examined genotype distributions and possible associations for 16 SNPs previously linked with sprint performance. Four SNPs (AGT rs699, HSD17B14 rs7247312, IGF2 rs680, and IL6 rs1800795) were associated with sprint test performance in this cohort. In addition, the G alleles of 2 SNPs in ADRB2 (rs1042713 & rs1042714) were significantly over-represented in these players compared with British and European controls. These results suggest that there is a genetic influence on sprint test performance in footballers, and identifies some of the genetic variants that help explain this influence

    Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes.

    No full text
    Vascular endothelial growth factor receptor 2 (VEGFR2) is essential to induce the full spectrum of VEGF angiogenic responses to aerobic training. In the present study, we examined the impact of the functional His472Gln polymorphism of the VEGFR2 gene on elite athlete status, endurance performance and muscle fibre type composition. Four hundred and seventy-one Russian athletes were prospectively stratified into four groups according to event duration, distance and type of activity, covering a spectrum from the more endurance-oriented to the more power-oriented. VEGFR2 genotype and allele frequencies were compared to 603 controls. To examine the association between VEGFR2 genotype and fibre type composition, vastus lateralis muscle biopsies were obtained from 45 physically active healthy men and 23 all-round speed skaters. In addition, 76 competitive rowers performed incremental endurance exercise to allow analysis of genotype associations with exercise responses. We found that the frequency of the VEGFR2 472Gln allele was significantly higher in endurance-oriented athletes compared to controls (36.8 vs. 27.4%, P = 0.0006). Relative VO(2max) was significantly greater in the VEGFR2 472Gln allele carriers compared with the His/His homozygotes of the sub-elite female rower group only. Genotype-specific differences were found for the proportion of slow-twitch fibres in both athletes and controls, which was approximately 10.1 and approximately 7.4% higher in the His/Gln and Gln/Gln genotypes than in the His/His genotype group, respectively. In conclusion, we have shown for the first time that variation in the VEGFR2 gene is associated with elite athlete status, endurance performance of female rowers and muscle fibre type composition

    The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes.

    No full text
    Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten 'endurance alleles' (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles they possessed. The proportion of subjects with a high (>/=9) number of 'endurance' alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 x 10(-6)). The number of 'endurance' alleles was shown to be positively correlated (r = 0.50; P = 4.0 x 10(-4)) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 x 10(-4)). These data suggest that the likelihood of becoming an elite endurance athlete depends on the carriage of a high number of endurance-related alleles
    corecore