31 research outputs found

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution

    Get PDF
    Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems

    On-line Monitoring Research of Seafood Quality Safety Based on Image Monitoring

    No full text

    Sound Absorption Properties of DFs/EVA Composites

    No full text
    Using discarded feather fibers (DFs) and ethylene vinyl acetate (EVA) copolymer, the DFs/EVA composites with good sound absorption performance were prepared by hot-pressing method. The effects of hot-pressing temperature, mass fraction of DFs, density and thickness of composites on the sound absorption properties were studied by the controlling variable method. The sound absorption properties of the composites were studied by the transfer function method, and under the optimized technological conditions, the sound absorption coefficient of the composites was above 0.9 and the sound absorption band was wide. According to the box counting method based on the fractal theory, the fractal dimension of DFs/EVA sound absorption composites was calculated through Matlab programming, and the relationship between the fractal dimension and the mass fraction of DFs, the volume density of the composites were analyzed, then the quantitative relationship between the fractal dimension and the maximum sound absorption coefficient was deduced, which played a major role in the sound absorption design of porous sound absorption materials

    Sound Absorption Performance of the Poplar Seed Fiber/PCL Composite Materials

    No full text
    Composite materials were prepared by the hot pressing method using poplar seed fibers and polycaprolactone (PCL) as the raw materials to solve the problems related to the recycling of waste fibers. The effects of mass fraction of poplar seed fibers, the volume density, and thickness on the sound absorption performance of the resulting composite materials were studied. The sound absorption coefficient curves of the composite material were obtained by the acoustic impedance transfer function method. The sound absorption coefficient of the composite material that was prepared under the optimal process conditions was higher than 0.7, and the effective sound absorption frequency band was wide. According to the box counting dimension method, which is based on the fractal theory, the fractal dimensions of the composite materials were calculated while using the Matlab program. The relationships between the fractal dimensions and the volume densities, mass fractions of poplar seed fibers, and thicknesses of the composite materials were also analyzed. Subsequently, the quantitative relationship between the fractal dimension and the sound absorption property parameters of the composite material was established in order to provide a theoretical basis for the design of the sound absorption composite material

    Impacts of PU Foam Stand-Off Layer on the Vibration Damping Performance of Stand-Off Free Layer Damping Cantilever Beams

    No full text
    Stand-off free layer damping is a vibration reduction method based on the traditional free layer damping. In this paper, a stand-off free layer damping cantilever beam is prepared with the steel plate as the base layer, rigid polyurethane (PU) foam as the stand-off layer, and rubber as the damping layer, and the motion equation of the cantilever beam is derived. The dynamic mechanical properties of damping rubber and PU foam are tested and analyzed. Through hammering tests, we have studied the effect of the density and thickness of the PU foam layer on the amplitude-frequency curves, modal frequencies, and loss factors of the cantilever beams. The results show that the rubber damping material is a major font of energy dissipation of the cantilever beam, and PU foam acts mainly to expand the deformation of the damping layer and plays a role in energy consumption. By increasing the density and thickness of PU foam within a certain range, the vibration peaks of the first five modes of the cantilever beam decreases gradually, the loss factors rise, and the damping performance is improved. Meanwhile, increased density and thickness enhances the overall stiffness of the beam, making the modal frequencies get higher

    Explosion Test and Numerical Simulation of Coated Reinforced Concrete Slab Based on BLAST Mitigation Polyurea Coating Performance

    No full text
    The mechanical strength, thermal stability, thermal performance, and microstructure of Qtech T26 blast mitigation polyurea (T26 polyurea) were studied using quasi-static and dynamic mechanical experiments, thermogravimetric experiments, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) experiments, and contact explosion and non-contact explosion experiments with polyurea-coated reinforced concrete slabs. Additionally, the energy dissipation mechanism of the coating was analyzed. The blast mitigation ability and blast mitigation mechanism of T26 polyurea-coated reinforced concrete slabs were investigated by analyzing the macroscopic morphology of reinforced concrete slabs with or without coatings and the contact explosion simulation of polyurea-coated reinforced concrete slabs. The results showed that T26 polyurea exhibited a certain strain rate effect. Its initial thermal decomposition temperature reached 286 °C, and its thermal stability was good. After carbonization, carbon slag can form and adhere to the structural surface. The glass transition temperature Tgs of the soft segment was −44.9 °C, and the glass transition temperature Tgh of the hard segment was 36.5 °C, showing a certain amount of microphase separation morphology. After the explosion test, there was a small pit on the front surface of the coated reinforced concrete plate, and there was no damage on the back surface. The integrity of the plate was good. The uncoated reinforced concrete slab had a large crater on the front of the explosion surface, and the back of the explosion surface experienced explosion collapse, concrete crushing, and an overall loss of stability. The numerical simulation results showed that the failure mode of the coated plate was consistent with the test. The kinetic energy conversion rate of the uncoated reinforced concrete plate was 87.27%, and the kinetic energy conversion rate of the coated reinforced concrete plate was 95.36%. The T26 coating improved the kinetic energy conversion rate of the structure and improved the blast mitigation ability of the reinforced concrete plate structure

    Tuning the electronic properties of epitaxial strained CaFeO3−δ thin films

    Get PDF
    Strain engineering of transition metal oxides due to their desirable properties has long been a focal point in both physics and material sciences. Here, we investigate the strain dependence of electronic and optical properties of the high valence iron-based perovskite CaFeO3d. Using substrates with various lattice constants, we achieve a wide range of tunable epitaxial strain states in CaFeO3d thin films ranging from compressive 0.37% to tensile 3.58%. Electrical transport and optical absorption measurements demonstrate a distinct strain-dependent behavior, in which larger tensile strain leads to higher electrical resistivity and a larger optical bandgap. We attribute these modulations to tensile strain suppressed p-d hybridization in CaFeO3d, as evidenced by soft X-ray absorption spectra measurements

    Manipulation of the Ferromagnetism in LaCoO3 Thin Films Through Cation‐Stoichiometric Engineering

    Get PDF
    Spin-state transitions are an important research topic in complex oxides with the diverse magnetic states involved. In particular, the low-spin to high-spin transition in LaCoO3 thin films has drawn a wide range of attention due to the emergent ferromagnetic state. Although various mechanisms (e.g., structural distortion, oxygen-vacancy formation, spin-state ordering) have been proposed, an understanding of what really underlies the emergent ferromagnetism remains elusive. Here, the ferromagnetism in LaCoO3 thin films is systematically modulated by varying the oxygen pressure during thin-film growth. Although the samples show dramatic different magnetization, their cobalt valence state and perovskite crystalline structure remain almost unchanged, ruling out the scenarios of both oxygen-vacancy and spin-ordering. This work provides compelling evidence that the tetragonal distortion due to the tensile strain significantly modifies the orbital occupancy, leading to a low-spin to high-spin transition with emergent ferromagnetism, while samples grown at reduced pressure demonstrate a pronounced lattice expansion due to cation-off-stoichiometry, which suppresses the tetragonal distortion and the consequent magnetization. This result not only provides important insight for the understanding of exotic ferromagnetism in LaCoO3 thin films, but also identifies a promising strategy to design electronic states in complex oxides through cation-stoichiometry engineering
    corecore