62 research outputs found

    Ternary solvent boosts two-dimensional perovskites

    Get PDF

    Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution

    Get PDF
    Scalable g-CN nanosheet powder catalyst was prepared by pyrolysis of dicyandiamide and ammonium chloride followed by ultra-sonication and freeze-drying. Nanosheet composite that combines the g-CN nanosheets and CaNbTaO nanosheets with various ratios were developed and applied as photocatalysts for solar hydrogen generation. Systematic studies reveal that the g-CN/CaNbTaO nanosheet composite with a mass ratio of 80:20 shows the best performance in photocatalytic H evolution under visible light-irradiation, which is more than 2.8 times out-performing bare g-CN bulk. The resulting nanosheets possess a high surface area of 96\ua0m/g, which provides abundance active sites for the photocatalytic activity. More importantly, the g-CN/CaNbTaO nanosheet composite shows efficient charge transfer kinetics at its interface, as evident by the photoluminescence measurement. The intimate interfacial connections and the synergistic effect between g-CN nanosheets and CaNbTaO nanosheets with cascading electrons are efficient in suppressing charge recombination and improving photocatalytic H evolution performance

    A hybrid TiO2–Ag nanocluster (NC) photoelectrode demonstrating unique wavelength-switchable photocurrents

    Get PDF
    Chemicals used, fabrication procedure, instrumentation, and photochemical measurements used in experimentsSupporting figures, images, and graph

    Processable graphene oxide-embedded titanate nanofiber membranes with improved filtration performance

    Get PDF
    Graphene oxide (GO)-embedded titanate nanofiber (TNF) membranes with improved filtration performance are prepared successfully by a two-step method including electrostatic assembly of GO and TNFs into hybrids and subsequent processing of them into membranes by vacuum filtration. The embedded contents of GO sheets in films and thickness of as-assembled films can be adjusted facilely, endowing such composite films with good processability. Owing to the skilful introduction of GO sheets, the pore and/or channel structures in these hybrid membranes are modified. By treating different dye solutions (Direct Yellow and Direct Red), the filtration properties of these membranes show that the introduction of certain amount of GO sheets efficiently improve the separation performance of the membranes. Interestingly, these GO-embedded TNF membranes also display superior selective separation performance on filtrating the mixture solutions of such two dyes, making these hierarchical membranes more flexible and versatile in water treatment areas

    Multiple resolution seismic attenuation imaging at Mt. Vesuvius

    Get PDF
    A three-dimensional S wave attenuation tomography of Mt. Vesuvius has been ob- tained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. We used 6609 waveforms, relative to 826 volcano-tectonic earthquakes, located close to the crater axis in a depth range between 1 and 4 km (below the sea level), recorded at seven 3-component digital seismic stations. We adopted a two-point ray-tracing; rays were traced in an high resolution 3-D velocity model. The spatial resolution achieved in the attenuation tomography is comparable with that of the velocity tomography (we resolve 300 m side cubic cells). We statisti- cally tested that the results are almost independent from the radiation pattern. We also applied an improvement of the ordinary spectral-slope method to both P- and S-waves, assuming that the di¤erences between the theoretical and the experimental high frequency spectral-slope are only due to the attenuation e¤ects.We could check the coda-normalization method comparing the S attenuation image obtained with the two methods. The images were obtained with a multiple resolution approach. Results show the general coincidence of low attenuation with high velocity zones. The joint interpretation of velocity and attenuation images allows us to interpret the low attenuation zone intruding toward the surface until a depth of 500 meters below the sea level as related to the residual part of solidi ed magma from the last eruption. In the depth range between -700 and -2300 meters above sea level, the images are consistent with the presence of multiple acquifer layers. No evidence of magma patches greater than the minimum cell dimension (300m) has been found. A shallow P wave attenuation anomaly (beneath the southern ank of the volcano) is consitent with the presence of gas saturated rocks. The zone characterized by the maximum seismic energy release cohincides with a high attenuation and low velocity volume, interpreted as a cracked medium

    Switched photocurrent on tin sulfide-based nanoplate photoelectrodes

    Get PDF
    A new type of SnS2 nanoplate photoelectrode is prepared by using a mild wet-chemical method. Depending on the calcination temperatures, SnS2-based photoelectrodes can either retain their n-type nature with greatly enhanced anodic photocurrent density (ca. 1.2 mA cm(-2) at 0.8V vs. Ag/AgCl) or be completely converted into p-type SnS to generate approximately 0.26 mA cm(-2) cathodic photocurrent density at -0.8 V vs. Ag/AgCl. The dominance of sulfur and tin vacancies are found to account for the dramatically different photoelectrochemical behaviors of n-type SnS2 and p-type SnS photoelectrodes. In addition, the band structures of n-type SnS2 and p-type SnS photoelectrodes are also deduced, which may provide an effective strategy for developing SnS2/SnS films with controllable energy-band levels through a simple calcination treatment

    Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3−xClx films

    Get PDF
    A unique bias-dependent phenomenon in CH3NH3PbI3-xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current-voltage (I-V) curves are highly dependent on the initial positive bias of the I-V measurement. In FTO/CH3NH3PbI3-xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V. (C) 2015 Elsevier Inc. All rights reserved

    Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation

    Get PDF
    The mixed caesium and formamidinium lead triiodide perovskite system (Cs1−xFAxPbI3) in the form of quantum dots (QDs) offers a pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective oleic acid (OA) ligand-assisted cation-exchange strategy that allows controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range (x = 0–1), which is inaccessible in large-grain polycrystalline thin films. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling rapid formation of Cs1−xFAxPbI3 QDs with reduced defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that the QD devices exhibit substantially enhanced photostability compared with their thin-film counterparts because of suppressed phase segregation, and they retain 94% of the original PCE under continuous 1-sun illumination for 600 h

    Development and applications of metal halide perovskites and their derivatives

    No full text

    Abnormal cathodic photocurrent generated on an n-type FeOOH nanorod-array photoelectrode

    No full text
    A simple, wet-chemical method for the synthesis of an FeOOH nanorod-array photoelectrode on fluorine-doped tin oxide (FTO) glass is reported. Nanorods of diameter about 35nm and length about 300nm have been vertically grown on an FTO substrate. Upon calcination, the FeOOH phase could be easily converted to a hematite structure while maintaining the shape of the nanorod array. An interesting abnormal cathodic photocurrent is generated on the FeOOH nanorod-array photoelectrode under illumination, which is totally different from that obtained on a calcined hematite photoelectrode under the same experimental conditions. The cathodic photocurrent density generated on the FeOOH photoelectrode can also be tuned by applying an electrochemical anodic or cathodic treatment. Detailed analysis has revealed that higher valence state Fe species in the FeOOH photoelectrode play an important role in sacrificing the photoexcited electrons for generation of the cathodic photocurrent. Comparison between the FeOOH and hematite photoelectrodes allows for a better understanding of the interplay between crystal structure, surface reactions, and photocurrent. The findings on this new abnormal phenomenon could also provide guidance for the design of new types of semiconducting photoelectrochemical devices
    corecore