25 research outputs found
Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors
<p>Abstract</p> <p>Background</p> <p>Renal epithelial tumors are morphologically, biologically, and clinically heterogeneous. Different morphologic subtypes require specific management due to markedly different prognosis and response to therapy. Each common subtype has characteristic chromosomal gains and losses, including some with prognostic value. However, copy number information has not been readily accessible for clinical purposes and thus has not been routinely used in the diagnostic evaluation of these tumors. This information can be useful for classification of tumors with complex or challenging morphology. 'Virtual karyotypes' generated using SNP arrays can readily detect characteristic chromosomal lesions in paraffin embedded renal tumors and can be used to correctly categorize the common subtypes with performance characteristics that are amenable for routine clinical use.</p> <p>Methods</p> <p>To investigate the use of virtual karyotypes for diagnostically challenging renal epithelial tumors, we evaluated 25 archived renal neoplasms where sub-classification could not be definitively rendered based on morphology and other ancillary studies. We generated virtual karyotypes with the Affymetrix 10 K 2.0 mapping array platform and identified the presence of genomic lesions across all 22 autosomes.</p> <p>Results</p> <p>In 91% of challenging cases the virtual karyotype unambiguously detected the presence or absence of chromosomal aberrations characteristic of one of the common subtypes of renal epithelial tumors, while immunohistochemistry and fluorescent in situ hybridization had no or limited utility in the diagnosis of these tumors.</p> <p>Conclusion</p> <p>These results show that virtual karyotypes generated by SNP arrays can be used as a practical ancillary study for the classification of renal epithelial tumors with complex or ambiguous morphology.</p
A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples
<p>Abstract</p> <p>Background</p> <p>Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples.</p> <p>Methods</p> <p>To address these limitations, we designed a novel "Virtual Normal" algorithm (VN), which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.</p> <p>Results</p> <p>The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.</p> <p>Conclusions</p> <p>We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.</p
The Degree of Segmental Aneuploidy Measured by Total Copy Number Abnormalities Predicts Survival and Recurrence in Superficial Gastroesophageal Adenocarcinoma
Abstract Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC
Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process
BACKGROUND: Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. METHODS: Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. RESULTS: The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). CONCLUSION: We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer
The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma
Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. Significance: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC. © 2014 Davison et al
Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process
Abstract Background Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Methods Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. Results The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). Conclusion We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.</p
Box plots of gene expression values for selected genes in donor prostate samples, primary prostate cancer and metastatic prostate samples
<p><b>Copyright information:</b></p><p>Taken from "Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process"</p><p>http://www.biomedcentral.com/1471-2407/7/64</p><p>BMC Cancer 2007;7():64-64.</p><p>Published online 12 Apr 2007</p><p>PMCID:PMC1865555.</p><p></p