18,610 research outputs found

    Integrated photo-responsive metal oxide semiconductor circuit

    Get PDF
    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation

    The dominant mode of standing Alfven waves at synchronous orbit

    Get PDF
    Low-frequency oscillations of the earth's magnetic field recorded by the UCLA magnetometer on board ATS-1, have been examined for the six-month interval, January-June, 1968. The initial interpretation, that these oscillations represent the second harmonic of a standing Alfven wave, has been re-examined, and it is concluded that this hypothesis must be withdrawn. Using evidence from OGO-5 and ATS-5, as well as the data from ATS-1, it is argued that the dominant mode at the synchronous orbit must be the fundamental rather than the second harmonic. From 14 instances when the oscillations of distinctly different periods occurred during the same time interval at ATS-1 it is concluded that higher harmonics can exist. The period ratio in 7 of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and 4 other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Algebraic structure of stochastic expansions and efficient simulation

    Full text link
    We investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems.Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration schemes that are more accurate than the corresponding stochastic Taylor approximation, independent of the governing vector fields and to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is one example. Herein we: show that the natural context to study stochastic integrators and their properties is the convolution shuffle algebra of endomorphisms; establish a new whole class of efficient integrators; and then prove that, within this class, the sinhlog integrator generates the optimal efficient stochastic integrator at all orders.Comment: 19 page

    Kusuoka-Stroock gradient bounds for the solution of the filtering equation

    No full text
    © 2014 Elsevier Inc.We obtain sharp gradient bounds for perturbed diffusion semigroups. In contrast with existing results, the perturbation is here random and the bounds obtained are pathwise. Our approach builds on the classical work of Kusuoka and Stroock [13,14,16,17], and extends their program developed for the heat semi-group to solutions of stochastic partial differential equations. The work is motivated by and applied to nonlinear filtering. The analysis allows us to derive pathwise gradient bounds for the un-normalised conditional distribution of a partially observed signal. It uses a pathwise representation of the perturbed semigroup following Ocone [22]. The estimates we derive have sharp small time asymptotics

    Random convex programs for distributed multi-agent consensus

    Get PDF
    We consider convex optimization problems with N randomly drawn convex constraints. Previous work has shown that the tails of the distribution of the probability that the optimal solution subject to these constraints will violate the next random constraint, can be bounded by a binomial distribution. In this paper we extend these results to the violation probability of convex combinations of optimal solutions of optimization problems with random constraints and different cost objectives. This extension has interesting applications to distributed multi-agent consensus algorithms in which the decision vectors of the agents are subject to random constraints and the agents' goal is to achieve consensus on a common value of the decision vector that satisfies the constraints. We give explicit bounds on the tails of the probability that the agents' decision vectors at an arbitrary iteration of the consensus protocol violate further constraint realizations. In a numerical experiment we apply these results to a model predictive control problem in which the agents aim to achieve consensus on a control sequence subject to random terminal constraints
    corecore