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Random Convex Programs for Distributed Multi-Agent Consensus

Giuseppe C. Calafiore and Daniel Lyons

Abstract— We consider convex optimization problems with N
randomly drawn convex constraints. Previous work has shown
that the tails of the distribution of the probability that the
optimal solution subject to these constraints will violate the next
random constraint, can be bounded by a binomial distribution.
In this paper we extend these results to the violation probability
of convex combinations of optimal solutions of optimization
problems with random constraints and different cost objectives.
This extension has interesting applications to distributed multi-
agent consensus algorithms in which the decision vectors of the
agents are subject to random constraints and the agents’ goal
is to achieve consensus on a common value of the decision
vector that satisfies the constraints. We give explicit bounds on
the tails of the probability that the agents’ decision vectors at
an arbitrary iteration of the consensus protocol violate further
constraint realizations. In a numerical experiment we apply
these results to a model predictive control problem in which the
agents aim to achieve consensus on a control sequence subject
to random terminal constraints.

I. INTRODUCTION

Whenever decision need to be made based on data col-
lected from the real-world, e.g., in control or machine
learning, uncertainty in the data will almost certainly occur.
In order to make decisions robust against uncertainties and
to assure unanticipated constraints are not violated, the
uncertainties have to be accounted for ex-ante in the decision-
making process. Several approaches have been studied to
counteract these difficulties and make decisions robust to
uncertainty. The robust convex optimization approach [1],
[2] finds a solution to a convex optimization problem that
is robust to all uncertainty realizations bound to lie in
a given bounded uncertainty set. Chance-constrained ap-
proaches assume that there is a probability measure over
the uncertainty set and try to find an optimal decision that
satisfies the constraints with high probability [3]. Random
convex programs (RCPs) find an optimal solution to an
optimization problem subject to a finite number of randomly
drawn constraints, which can be done fast and efficiently with
modern convex solvers. Since the constraints are randomly
drawn, the optimal solution of an RCP is a random variable.
For RCPs [4] and [5] initially provided bounds on the tails of
the probability that an optimal solution found with N random
constraints will become infeasible for the next randomly
drawn constraint. These bounds were refined in [6] and [7]
and further extended to cases in which a violation of some
random constraints is tolerated in [7].

In this paper we first extend theoretical results on RCPs
to the following case: Optimal solutions of RCPs with
different cost directions but with the same random constraints

This work was funded by Italian Ministry of University and Research
with PRIN grant n. 20087W5P2K “Large-scale and distributed systems:
optimization, estimation and control, with applications” and by the Research
Training Group 1194 ”Self-organizing Sensor-Actuator-Networks” from the
German Research Foundation.

G. C. Calafiore is with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Italy. giuseppe.calafiore@polito.it

D. Lyons is with the Intelligent Sensor-Actuator-Systems Laboratory,
Karlsruhe Institute for Technology, Germany. lyons@kit.edu

will in general be different vectors within the space of
feasible decision vectors. If one considers an arbitrary convex
combination of these optimal solutions, the convexity of the
constraint function guarantees that the convex combination
will be feasible for all N random constraints. However, there
are no results on the violation probability of such a convex
combination yet and the first contribution of this paper is to
give explicit bounds on the tails of their violation probability.
These bounds do not depend on the coefficients in the convex
combination and, hence, they actually allow us to bound the
violation probability of an entire set contained inside the
feasible region of the initial RCPs. The set is the convex
polytope of all convex combinations of the optimal solutions
of the initial RCPs.

The second contribution of this paper is the application
of the above theoretical results to distributed multi-agent
consensus problems subject to random constraints. Here the
task of the agents is to employ a consensus algorithm in
order to reach agreement on a common decision vector that
is subject to N random constraint realizations. We assume
that the initial values for the decision vectors are computed
by each agent as the optimal solution to RCPs and each agent
can potentially have its own cost vector in this computation.
This assumption is applicable for example when consensus
algorithms are utilized to find a common estimate based on
uncertain data and each agent uses a different estimation
technique to determine its own initial estimate. Another
application is the coordination of UAVs under exogenous
disturbances when each UAV first determines a trajectory
that is optimal with respect to its own priorities regarding
e.g. fuel-efficiency or path-length. For such a consensus
problem we show that with high probability the decision
vector for each agent at an arbitrary iteration of the consensus
algorithm remains feasible for further realizations of the
random constraints. This result is a consequence of the
previous result on convex combinations since the consensus
rule with which the agents update their decision vector with
the ones of the other agents is essentially a repeated convex
combination.

These “averaging” multi-agent consensus algorithms have
received great interest in the recent past starting with [8],
[9] mostly due to their robustness against changes of the
communication topology and their distributed nature. Current
studies mostly deal with convergence of the agents’ decision
vectors under different assumptions on the communication
structure and update rules, for details see [10]–[12]. Potential
applications of consensus algorithms are data fusion in sensor
networks [13], the coordination of multiple vehicles [14],
distributed control [12] and dynamic load balancing in multi-
processor networks [15]. The work [16] proposes a dis-
tributed algorithm (based on constraint consensus strategies
[17]) for solving one large RCP where the cost objective is
shared among all agents but each agent only has knowledge
about a small subset of the random constraints. In contrast,
in this paper all agents have knowledge about all random



constraints but can have different cost objectives.
The paper is structured as follows. In Section II we

formally introduce random convex programs and their most
important properties. Further we briefly highlight the general
class of distributed multi-agent consensus algorithms we
consider in this paper. In Section III we establish the first
contribution of this paper, the bounds on the tails of the
violation probability of convex combinations of optimal
solutions of different RCPs. In Section IV we apply this
result to multi-agent consensus. In Section V we present
a numerical example for multi-agent consensus for model
predictive control with terminal constraints. Section VI con-
cludes the paper.

II. PRELIMINARIES

In this section we first introduce random convex programs
and present the main result on their generalization properties.
Then, we briefly highlight the main concepts of distributed
multi-agent consensus algorithms.

A. Random Convex Programs
Let δ ∈ ∆ ⊂ Rl be a random vector with probabil-

ity distribution P, and denote by ω := (δ(1), . . . , δ(N))
N independent realizations drawn from the random vector
δ. Let f(x, δ) be a function that is convex and lower-
semicontinuous in the argument x for all δ.

Definition 1 (Random Convex Program (RCP)): An opti-
mization problem of the form

P[ω] : min
x

c>x

s.t. f(x, δ(j)) ≤ 0, j = 1, . . . , N

x ∈ Ω ,

(1)

with a linear objective c 6= 0 and decision variable x confined
to lie within a compact domain Ω ⊂ Rd is called a random
convex program (RCP). �
Denote the optimal solution of an RCP depending on the
(multi-)sample ω by x∗(ω) and the optimal objective by
Obj(P[ω]). We assume that the optimal solution x∗(ω) is
unique, which is not a severe restriction, since tie-braking
rules (like a lexicographic ordering) can be employed to
always ensure uniqueness (for details cf. [5]).

Definition 2 (Support Constraints): A constraint δ(j), j ∈
{1, . . . , N} is called support constraint of P[ω] if the optimal
objective of the RCP strictly improves when constraint δ(j)
is removed from the sample ω. Denote the set of support
constraints of P[ω] by Sc(P[ω]) ⊂ {δ(1), . . . , δ(N)}. �

Definition 3 (Nondegenerate Problem): An RCP P[ω] is
called nondegenerate for an sample ω if for the optimal
objective holds Obj(P[ω]) = Obj(Sc(P[ω]))1, i.e., when
the optimal objective computed with all constraints ω equals
the optimal objective computed when only the support con-
straints are considered. �

Definition 4 (Violation Probability): For an RCP P[ω] the
violation probability is defined as

V ∗(ω) := P{δ ∈ ∆: f(x∗(ω), δ) > 0} , (2)

that is, the probability that the optimal solution x∗(ω) of P[ω]
computed under the realization ω will become infeasible
under the next realization δ ∈ ∆. �

1With slight abuse of notation we denote here the optimal objective
computed on the support constraint set by Obj(Sc(P[ω]))

Since both the optimal solution and the optimal objective
value of an RCP depend on the sample ω they are random
variables, as is the violation probability V ∗(ω). The main
result on random convex programs is the following.

Theorem 1 ( [6], [7]): Let ε ∈ (0, 1] and N ≥ d − 1,
where d is the dimension of the decision vector x. For an
RCP P[ω] that is feasible and nondegenerate with probability
one, the following holds

PN
{
ω ∈ ∆N : V ∗(ω) > ε

}
≤ Φ(ε; d− 1, N) , (3)

where

Φ(ε; q,N) :=

q∑
j=0

(
N

j

)
εj(1− ε)N−j (4)

is the cumulative binomial distribution. �
This theorem presents an a-priori assessment of the probabil-
ity that the optimal solution of an RCP that was found on a
finite number of constraint realizations remains feasible and,
hence, optimal for further yet “unseen” random constraints.

B. Distributed Multi-Agent Consensus

In this section we will briefly outline algorithms for
distributed multi-agent consensus (for more details see e.g.
[9]–[12]). In these algorithms the goal of the agents is to
agree on a common value of a decision vector through
distributed coordination techniques. Consider a set A of
agents A = {1, . . . , n}. Each agent i starts with an initial
value of the decision vector xi(0) only known to himself.
For the consensus protocol we consider discrete time steps
t = 0, 1, . . . and at each of these time steps each agent i
receives values from other agents. Agent i then updates its
own decision vector according to the update rule

xi(t+ 1) =

n∑
j=1

aij(t)xj(t) , (5)

where the weight matrix A(t) = (aij(t))i,j=1,...,n at iteration
t is a possibly time-varying matrix representing the commu-
nication topology of the agents and the consensus rule. In
particular, aij(t) > 0 only if agent i received a value from
agent j at time step t. One important property of the matrices
A(t) that is generally required in the literature and will be
also crucial for our derivations is that A(t) is a stochastic
matrix for all time steps.

Definition 5: A matrix A = (aij)i,j=1,...,n is called
stochastic when aij ≥ 0 and

∑n
j=1 aij = 1, for all i =

1, . . . , n, i.e., all row sums are equal to one. �
A consequence of the stochasticity of the update matrices
is that the decision vector xi(t) arises through taking it-
erated convex combinations of the initial decision vectors
x1(0), . . . , xn(0).

In current research on multi-agent consensus the main
focus lies on establishing convergence of the agents’ local
decision vectors under distributed communication protocols
for t → ∞ with different restrictions and assumptions on
the communication topology and the matrices A(t) [9], [11],
[12]. Also, explicit rates of convergence are studied in [10].



III. CONVEX COMBINATIONS OF OPTIMAL SOLUTIONS
OF RCPS

In this section we consider the setup were not only the
solution to an RCP with a single cost direction is computed,
but the solutions of several RCPs with different cost vectors
with the same constraint realizations are determined and the
violation probability of their convex combination is studied.
More precisely, we consider the optimal solutions x∗i :=
x∗i (ω) for i = 1, . . . , n to n RCPs

Pi[ω] : min
xi

c>i xi

s.t. f(xi, δ
(j)) ≤ 0, j = 1, . . . , N

xi ∈ Ω

(6)

where each of the Pi[ω] satisfies the assumptions of Theo-
rem 1. In general, for different cost directions the optimal
solutions will also be different vectors in Rd. These different
optimal solutions x∗i have in common that they all are feasi-
ble for the constraints arising from the sample ω. Consider
now a vector xλ(ω) that is the convex combination of the
vectors x∗i (ω), i.e.,

xλ(ω) =

n∑
i=1

λix
∗
i (ω) , (7)

with coefficients λi ≥ 0 and
∑n
i=1 λi = 1. Due to the

convexity of the constraint function f(x, δ), the vector xλ(ω)
will be feasible for all constraints arising from the samples
δ(1), . . . , δ(N). However, although we can employ Theorem 1
to derive tails on the violation probability of each of the
optimal solutions of the Pi[ω], it is not obvious how one
should reason on the violation probability of the point xλ(ω).
More precisely, an open question is “what are the tails of
the probability that the vector xλ(ω) becomes infeasible
under the next random constraint?”. The following theorem
establishes an answer to this question.

Theorem 2: Let xλ(ω) be a convex combination of the
optimal solutions x∗i (ω) to n RCPs as in Eq. (6) and let
N ≥ nd− 1. Then it holds that

PN
{
ω ∈ ∆N : V ∗λ (ω) > ε

}
≤ Φ(ε;nd− 1, N) , (8)

where

V ∗λ (ω) = P{δ ∈ ∆: f(xλ(ω), δ) > 0} (9)

is the probability that xλ(ω) becomes infeasible under the
next realization of δ and Φ(ε; q,N) is as in Eq. (4). �
The proof of this theorem is lengthy and technical but since
it is of general interest and of importance for the following
results it is included in the Appendix.

In the statement of the theorem and its proof it becomes
apparent that the theorem does not depend on the particular
choice of the convex combination coefficients λi. Hence,
it follows that the theorem holds for any arbitrary convex
combination of optimal solutions of n RCPs. So actually the
theorem gives a bound on the tails of the violation probability
of a whole subset (a convex polytope with vertices x∗i (ω))
of the random feasible region. Therefore, Theorem 2 extends
the results on RCPs from statements on the violation prob-
ability of a single point in the random feasible region, i.e.,
the optimal solution of an RCP to the violation probability
of an entire set.

IV. MULTI-AGENT CONSENSUS AND RCPS

The bounds on the violation probability of convex com-
binations of different optimal solutions of RCPs from the
previous section have interesting applications to multi-agent
consensus algorithms when the agents aim to agree on the
value of a decision vector subject to random constraints.

As in general multi-agent consensus we consider a set
A of agents A = {1, . . . , n}. We assume that each of
the agents’ initial decision vectors is the optimal solution
of an RCP Pi[ω] as in Eq. (6). After each agent solved
Pi[ω], the optimal solutions x∗i (ω) are taken as the initial
values for a consensus algorithm as described in Section II-
B, i.e., the goal of the agents is to achieve consensus
through coordination and the exchange of messages on a
value of the decision vector that still satisfies the random
constraints. These constraints can for example stem from
a dataset that is known to all agents or could be drawn
from a random variable where each agent initializes its
pseudorandom generator with the same random seed. Hence,
the problem we want to consider is the following:

Problem 1 (Consensus with Random Constraints):
The goal of the agents is to employ the consensus
averaging protocol to find a common value of x∗ such that
f(x∗, δ(j)) ≤ 0, j = 1, . . . , N under the assumption that
the xi(0) are solutions of RCPs Pi[ω]. �

We are interested in the probability that the current value
xi(t) of an agent i at an iteration t of the consensus
algorithm becomes infeasible under the next realization of
the random constraints which is a generalization of the
violation probability for normal RCPs.

Definition 6 (Consensus Violation Probability): For a
distributed multi-agent consensus algorithm in which the
initial vectors xi(0) of each agent are the optimal solutions
to RCPs Pi[ω], define the consensus violation probability as

V ∗t,i(ω) = P{δ ∈ ∆: f(xi(t), δ) > 0} , (10)

the probability that the decision vector of agent i at coordina-
tion iteration t becomes infeasible under the next realization
of the random constraints. �

Theorem 3 (Multi-agent Consensus Feasibility): Let x∗i ,
i = 1, . . . , n be optimal solutions to n RCPs Pi[ω] for N ≥
nd− 1 and assume that each Pi[ω] satisfies the assumptions
of Theorem 1. Consider a distributed multi-agent consensus
algorithm with initial decision vectors xi(0) = x∗i for all
i ∈ A and update rule for the agents’ decision vectors
according to Eq. (5) with stochastic matrix A(t) for all t ≥ 0.
Then for ε ∈ (0, 1] and each time step t ≥ 0 it holds that

PN
{
ω ∈ ∆N : V ∗t,i(ω) > ε

}
≤ Φ(ε;nd− 1, N) (11)

where V ∗t,i(ω) is the consensus violation probability and
Φ(ε; q,N) as in Eq. (4). �

This means that for each agent at each iteration of the
consensus algorithm the tails of the consensus violation
probability are bounded by a binomial distribution.

Proof: Let t = 1 and consider an arbitrary agent i ∈ A.
We have that

xi(1) =

n∑
j=1

aij(0)xj(0) (12)

and because aij(0) ≥ 0 and
∑n
j=1 aij(0) = 1, xi(1) is the

convex combination of the x∗j that are the optimal solutions



of Pi[ω]. We apply Theorem 2 to obtain

PN
{
ω ∈ ∆N : V ∗i,1(ω) > ε

}
≤ Φ(ε;nd− 1, N) . (13)

Let t ≥ 2. We can write xi(t+ 1) as

xi(t+ 1) =

n∑
j=1

ãij(t)xj(0) (14)

where A(t)A(t − 1) · · ·A(0) = (ãij(t))i,j=1,...,n and all
matrices A(s) for s = 0, . . . , t are stochastic matrices. Since
the product of stochastic matrices is again a stochastic matrix
we can deduce for the coefficients ãij(t) that ãij(t) ≥ 0 and

n∑
j=1

ãij(t) = 1 . (15)

Hence, xi(t+ 1) is still a convex combination of the x∗i and
by Theorem 2 it holds that

PN
{
ω ∈ ∆N : V ∗i,t(ω) > ε

}
≤ Φ(ε;nd− 1, N) (16)

and the statement of the theorem follows.
This result is of relevance in applications in which the
decision vectors of the agents need to satisfy certain random
constraints. It guarantees that for an arbitrary distributed
consensus algorithm, as long as the update rule is based
on stochastic weighting matrices, the local decision vectors
of the agents will with high probability remain feasible for
future realizations of the random constraints at each iteration
of the algorithm.

In practical applications the agents will not coordinate for
an infinite amount of time but the coordination will halt at
some finite instance t0. While most studies on consensus
algorithms are concerned with properties of the values for
t→∞ we here guarantee bounds on the violation probabil-
ity for every iteration of the consensus algorithm and, hence,
also for the decision vectors at a stopping time t0.

V. NUMERICAL EXAMPLE

We apply the results of the previous chapter to a model
predictive control (MPC) example in which each agent has
a different control objective and wants to optimally control
a system with random terminal constraints over a horizon of
length T . The terminal constraint set is random in the sense
that it is given through linear inequalities that are perturbed
by a random vector. We utilize the results of the previous
section to construct a distributed consensus algorithm on the
control inputs of the agents for that it is guaranteed that at
each iteration the terminal states resulting from the current
values of the controls of the agents will lie in the terminal
constraint set for further random constraint realizations with
high probability.

To be more precise, the linear, time-invariant, discrete time
state equation of the system is given through

xi(k) = Axi(k − 1) +Bui(k) (17)

for k = 1, . . . , T with

A =

[
1 1
0 1

]
, B =

[
0.5
1

]
(18)

and initial state xi(0) = [7, 0]>. The control inputs ui(k) ∈
R are constrained by ‖ui(k)‖∞ ≤ 2 for all k = 1, . . . , T .
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Fig. 1. Feasible set for the terminal states xi(T ). The blue lines are the
linear inequalities resulting from the realizations of the random constraints
in Eq. (20) and the red squares are the terminal states xi(T ) resulting from
the optimal solutions of the agents’ RCPs. The controls leading to these
states are taken as the initial values for the consensus algorithm.

We consider n = 4 agents and the objective of agent i is

Ji(ui) =

T∑
k=1

(xi(k)− zi)>(xi(k)− zi) + rui(k), (19)

for the control sequence ui := (ui(1), . . . , ui(T )). Hence,
we penalize deviations of the state from a point zi ∈ R2 that
is different for each agent, and the control effort is discounted
by r = 0.1. Since the states xi(k) depend deterministically
on the controls, only the controls ui are decision variables.
The values for the zi we used are z1 = [7, 7]>, z2 =
[7, −7]>, z3 = [10, 0]>, z4 = [−7, 0]>. The time horizon
was set to T = 7.

Remark 1: Notice that the linear objective in the RCPs
Pi[ω] poses no restriction to the model and the quadratic
objectives in Eq. (19) can be employed. This follows since
a nonlinear convex objective function gi(xi) can be trans-
formed into a linear objective by adding a scalar slack vari-
able ti and considering the epigraphic reformulation of the
problem with linear objective ti and deterministic constraint
gi(xi) ≤ ti. Theoretically the epigraphic reformulation adds
another decision variable, the slack variable ti, and, hence,
the bound (3) in Thm. 1 would have to be formulated with
d instead of d − 1 in the binomial distribution. However, it
is possible to show that in fact the slack variable ti does not
influence the probabilistic bounds and bound (3) holds for
RCPs with general nonlinear convex objective without the
need to increase the dimension of the decision variable.

�
The terminal constraint set is given through the linear

inequalities

al(δl)
>xi(T ) ≤ bl , l = 1, . . . , 4 (20)

with a1(δ1) = [1, 0]>+δ1, a2(δ2) = [0, 1]>+δ2, a3(δ3) =
[1, 0]> + δ3, a4(δ4) = [0, 1]> + δ4 and the perturbations
δl are zero-mean Gaussian random vectors with covariance
matrices diag(0.5, 0.5) for l = 1, 2, 3 and diag(0.01, 0.01)
for l = 4. The right hand sides in Eq. (20) are given through
b1 = 2, b2 = 1, b3 = 0.5, b4 = 0.5.

Each agent’s problem has T decision variables
(ui(1), . . . , ui(T )). We chose the confidence β = 0.001



Agent 1 Agent 2

Agent 3Agent 4

Fig. 2. Undirected cycle graph used for communication topology in the
numerical example.
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Fig. 3. Depicted are the x (top) and y (bottom) coordinate of the terminal
states of each agent over 20 iterations of the consensus protocol.

and ε = 0.1 and according to Thm. 3 we computed that we
need to draw N = 475 samples of the terminal constraints
to guarantee that P

{
V ∗t,i > ε

}
≤ Φ(ε;nd − 1, N) ≤ β.

The different objectives will cause the agents to compute
different optimal state trajectories and their goal is to reach
consensus on a common state trajectory that still satisfies
the terminal state constraints. The resulting MPC RCP
problem for each agent i is

min
ui

Ji(ui)

s.t. max
l=1,...,4

{
al(δ

(j)
l )>xi(T )− bl

}
≤ 0, j = 1, . . . , N

‖ui(k)‖∞ ≤ 2, k = 1, . . . , T

xi(k) = Axi(k − 1) +Bui(k), k = 1, . . . , T

xi(0) = [7, 0]> .
(21)

and we solved these quadratic programs with solver software
CPLEX [18]. The problem is feasible with probability one,
since the terminal state [0, 0]> is feasible with probability
one and can be always reached given the input constraints.
In Figure 1 we depict a realization of the random terminal
constraint set where the blue lines are the realizations of the
constraints in Eq. (20). The red squares are the terminal states
xi(T ) under the agents’ controls and the red line connecting
to the states is the end part of the state trajectory that lead
to this particular terminal state.

The optimal controls u∗i = (u∗i (1), . . . , u∗i (T )) were then
taken as initial values for multi-agent consensus. The com-
munication topology is given by an undirected cycle graph
(see Fig. 2 for an illustration). We assume a fixed coefficient,
symmetric, equal neighbor model for the update rule, i.e.,
aij = 1

3 , if i communicates to j and aii = 1
3 . In Figure 3 we

depict the impact of 20 iterations of the consensus algorithm
on the x and y coordinate of the terminal states xi(T ).
Theorem 3 guarantees that with confidence of 1−β = 0.999
when another sample of the random terminal constraints is
drawn all terminal states xi(T ) in Fig. 3 will still satisfy the
terminal constraint with probability 1− ε = 0.9.

VI. CONCLUSIONS

We presented an extension of previous results on random
convex programs by giving explicit bounds on the tails of
the violation probability of convex combinations of optimal
solutions of RCPs computed with different cost directions.
This result allows us to reason on the violation probability of
an entire set, the polytope with the aforementioned optimal
solutions as vertices. As an application of this result we have
studied a situation in which agents in a multi-agent system
search for a common value of a decision vector subject
to random constraints. We provided bounds on the tails of
the consensus violation probability, i.e., the probability that
the decision vector of an agent at an arbitrary iteration of
the consensus algorithm becomes infeasible under the next
random constraint realization. We applied this result to a
multi-agent model predictive control problem with random
terminal constraints.
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APPENDIX
PROOF OF THEOREM 2

Proof: The proof proceeds in two steps. We first show
that

PN
{
ω ∈ ∆N : V ∗λ (ω) > ε

}
≤ PN

{
ω ∈ ∆N : V ∗c (ω) > ε

}
(22)

where

V ∗c (ω) := P{δ ∈ ∆: f(x∗1, δ) > 0 or . . . or f(x∗n, δ) > 0}

= P

{
n⋃
j=1

{δ ∈ ∆: f(x∗j , δ) > 0}

}
. (23)

Then, we show that

PN
{
ω ∈ ∆N : V ∗c (ω) > ε

}
≤ Φ(ε;nd− 1, N) . (24)

a) Proof of (22): Because of the convexity of f we
have for xλ := xλ(ω) that

f(xλ, δ) = f

(
n∑
i=1

λix
∗
i , δ

)
≤

n∑
i=1

λif(x∗i , δ) . (25)

It also holds that

{δ : f(xλ, δ) > 0} = ∆ \ {δ : f(xλ, δ) ≤ 0} . (26)

From (25) it follows that if
∑n
i=1 λif(x∗i , δ) ≤ 0 also

f(xλ, δ) ≤ 0 and, hence,

{δ :
∑

λif(x∗i , δ) ≤ 0} ⊂ {δ : f(xλ, δ) ≤ 0} . (27)

Then, it follows that

{δ : f(xλ, δ) > 0}
(a)
⊂ {δ :

∑
λif(x∗i , δ) > 0}

(b)
⊂ {δ : f(x∗1, δ) > 0 or . . . or f(x∗n, δ) > 0}

=

n⋃
i=1

{δ : f(x∗i , δ) > 0} ,

(28)

where (a) follows from equation (26) and inclusion (27)
and (b) follows from the fact that all λi ≥ 0 and,
hence, for the sum to be strictly positive at least one of
the summands has to be strictly positive. From the inclu-
sions (28) it follows that V ∗λ (ω) = P{δ : f(xλ, δ) > 0} ≤
P{δ : f(x∗1, δ) > 0 or . . . or f(x∗n, δ) > 0} = V ∗c (ω) and
if V ∗λ (ω) > ε it follows that also V ∗c (ω) > ε and so we
obtain (22).

b) Proof of (24): Consider the RCP

Pc[ω] : min
x1,...,xn

n∑
i=1

c>i xi

s.t. max
i=1,...,n

(
f(xi, δ

(j))
)
≤ 0, j = 1, . . . , N .

Pc[ω] is in fact convex since f is convex and taking the
pointwise maximum of convex functions preserves convexity
(see e.g. [19]). We want to apply Thm. 1 to Pc[ω] and
in order to do so we show that if each Pi[ω] satisfies the
assumptions of Thm. 1, then so will Pc[ω].

We will show first that the component x∗i of a joint feasible
solution (x∗1, . . . , x

∗
n) of Pc[ω] is feasible for Pi[ω]. Let

(x1, . . . , xn) be feasible for Pc[ω] which is equivalent to
maxi=1,...,n

(
f(xi, δ

(j))
)
≤ 0 for j = 1, . . . , N , which is

equivalent to f(xi, δ
(j)) ≤ 0 for all j = 1, . . . , N and for all

i = 1, . . . , n and this is equivalent to the fact that every

xi is feasible for the corresponding Pi[ω]. Now we will
show that each component of an optimal joint solution of
Pc[ω] is optimal for the corresponding Pi[ω] and vice versa.
Let (x∗1, . . . , x

∗
n) be optimal for Pc[ω] and let x̂1, . . . , x̂n

be optimal for the respective Pi[ω]. Since x∗i is feasible for
Pi[ω] and x̂i is optimal for Pi[ω] we have that c>i x̂i ≤ c>i x∗i .
(x∗1, . . . , x

∗
n) is optimal for Pc[ω] and (x∗1, . . . , x̂i, . . . , x

∗
n)

is feasible and we have
∑n
j=1 c

>
j x
∗
j ≤

∑n
j=1 j 6=i c

>
j x
∗
j +

c>i x̂i ⇒ c>i x
∗
i ≤ c>i x̂i and it follows that c>i x

∗
i = c>i x̂i for

all i = 1, . . . , n. From the uniqueness of the optimal solution
for each Pi[ω] it follows that x∗i = x̂i for all i and it further
follows that the optimal solution of Pc[ω] is also unique.

Next, we prove that Pc[ω] is nondegenerate with proba-
bility one. Let δ(j) be a support constraint for Pc[ω] i.e.,
δ(j) ∈ Sc(Pc[ω]). If the objective of Pc[ω] improves without
constraint δ(j), then

∑n
i=1 c

>
i x
∗
i improves and hence some of

the Pi[ω] must have improved objectives. Hence, there are
i1, . . . , ik with Pil(ω) for il ∈ {i1, . . . , ik} has improved
objective. So it follows that constraint δ(j) is a support
constraint for these Pil(ω). Let δ(j) ∈

⋃n
i=1 Sc(Pi[ω]) then

there are i1, . . . , ik with Pil(ω) for il ∈ {i1, . . . , ik} has
improved objective and, hence, Pc[ω] also has improved
objective when constraint δ(j) is omitted in Pc[ω]. So we
obtain that Sc(Pc[ω]) =

⋃n
i=1 Sc(Pi[ω]). Let all Pi[ω] be

nondegenerate, i.e., Obj(Pi[ω]) = Obj(Sc(Pi[ω])). We have
that

Obj(Pc[ω])

=

n∑
i=1

Obj(Pi[ω])
(1)
=

n∑
i=1

Obj(Sc(Pi[ω])) ,
(29)

where (1) follows because the Pi[ω] are nondegenerate.
Further, we have

Obj(Sc(Pc[ω])) = Obj

( ⋃
i=1,...,n

Sc(Pi[ω])

)

=

n∑
i=1

Obj

( ⋃
i=1,...,n

Sc(Pi[ω])

)

=

n∑
i=1

Obj(Sc(Pi[ω])

(30)

and since the right hand sides of (29) and (30) are equal,
so are the left hand sides and Pc[ω] is nondegenerate. The
samples δ(j) are drawn independently with same distribution
and the constraint sets in the Pi[ω] do not depend on the
order in which the samples are drawn. Hence, the samples for
Pc[ω] are also drawn independently and the constraints for
Pc[ω] also do not depend on the order in which the samples
are drawn.

So we have proved that Pc[ω] satisfies the assumptions of
Thm. 1 and we apply it to obtain

PN
{
ω ∈ ∆N : Vc(ω) > ε

}
≤ Φ(ε;nd− 1, N) (31)

with

Vc(ω) = P
{
δ ∈ ∆: max

i=1,...,n
(f(x∗i , δ)) > 0

}
(32)

= P{δ ∈ ∆: ∃f(x∗i , δ) > 0} (33)
= P{δ ∈ ∆: f(x∗1, δ) > 0 or . . . or f(x∗n, δ) > 0}

because Pc[ω] has n · d decision variables (x1, . . . , xn) ∈
Rnd.


