9,950 research outputs found
Addressing spin transitions on 209Bi donors in silicon using circularly-polarized microwaves
Over the past decade donor spin qubits in isotopically enriched Si
have been intensely studied due to their exceptionally long coherence times.
More recently bismuth donor electron spins have become popular because Bi has a
large nuclear spin which gives rise to clock transitions (first-order
insensitive to magnetic field noise). At every clock transition there are two
nearly degenerate transitions between four distinct states which can be used as
a pair of qubits. Here it is experimentally demonstrated that these transitions
are excited by microwaves of opposite helicity such that they can be
selectively driven by varying microwave polarization. This work uses a
combination of a superconducting coplanar waveguide (CPW) microresonator and a
dielectric resonator to flexibly generate arbitrary elliptical polarizations
while retaining the high sensitivity of the CPW
Recommended from our members
Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration.
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration
Electrical activation and electron spin coherence of ultra low dose antimony implants in silicon
We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically
enriched 28Si and find high degrees of electrical activation and low levels of
dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance
shows that spin echo decay is sensitive to the dopant depths, and the interface
quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles
peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface
is passivated with hydrogen. These measurements provide benchmark data for the
development of devices in which quantum information is encoded in donor
electron spins
Stark shift and field ionization of arsenic donors in Si-SOI structures
We develop an efficient back gate for silicon-on-insulator (SOI) devices
operating at cryogenic temperatures, and measure the quadratic hyperfine Stark
shift parameter of arsenic donors in isotopically purified Si-SOI layers
using such structures. The back gate is implemented using MeV ion implantation
through the SOI layer forming a metallic electrode in the handle wafer,
enabling large and uniform electric fields up to 2 V/m to be
applied across the SOI layer. Utilizing this structure we measure the Stark
shift parameters of arsenic donors embedded in the Si SOI layer and find
a contact hyperfine Stark parameter of m/V. We also demonstrate electric-field driven dopant ionization in
the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure
Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires
Based on first-principles density functional theory calculations we explore
electronic and magnetic properties of experimentally producible sandwiches and
infinite wires made of repeating benzene molecules and transition-metal atoms
of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in
particular concentrate on the origin of magnetism in these structures. We find
that all the considered systems have sizable magnetic moments and ferromagnetic
spin-ordering, with the single exception of the V3-Bz4 molecule. By including
the spin-orbit coupling into our calculations we determine the easy and hard
axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy
energy (MAE), relevant for the thermal stability of magnetic orientation, and
the change of the electronic structure with respect to the direction of the
magnetic moment, important for spin-transport properties. While for the V-based
compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal
atom, increasing the spin-orbit strength by substituting V with heavier Nb and
Ta allows to achieve an increase in anisotropy values by one to two orders of
magnitude. The rigid stability of magnetism in these compounds together with
the strong ferromagnetic ordering makes them attractive candidates for
spin-polarized transport applications. For a Nb-benzene infinite wire the
occurrence of ballistic anisotropic magnetoresistance is demonstrated.Comment: 23 pages, 8 figure
Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28
We have performed continuous wave and pulsed electron spin resonance
measurements of implanted bismuth donors in isotopically enriched silicon-28.
Donors are electrically activated via thermal annealing with minimal diffusion.
Damage from bismuth ion implantation is repaired during thermal annealing as
evidenced by narrow spin resonance linewidths (B_pp=12uT and long spin
coherence times T_2=0.7ms, at temperature T=8K). The results qualify ion
implanted bismuth as a promising candidate for spin qubit integration in
silicon.Comment: 4 pages, 4 figure
Coupling of Coronal and Heliospheric Magnetohydrodynamic Models: Solution Comparisons and Verification
Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit
Oscillating grid turbulence in shear-thinning polymer solutions
Oscillating grid apparatuses are well known and convenient tools for the fundamental study of turbulence and its interaction with other phenomena since they allow to generate turbulence supposedly homogeneous, isotropic, and free of mean shear. They could, in particular, be used to study turbulence and mass transfer near the interface between non-Newtonian liquids and a gas, as already done in air-water situations. Although frequently used in water and Newtonian fluids, oscillating grid turbulence (OGT) generation has yet been rarely applied and never characterized in non-Newtonian media. The present work consists of a first experimental characterization of the flow properties of shear-thinning polymer (Xanthan Gum, XG) solutions stirred by an oscillating grid. Various polymer concentrations are tested for a single grid stirring condition. The dilute and semidilute entanglement concentration regimes are considered. Liquid phase velocities are measured by Particle Image Velocimetry. The existing mean flow established in the tank is described and characterized, as well as turbulence properties (intensity, decay rate, length scales, isotropy, etc.). OGT in dilute polymer solutions induces an enhanced mean flow compared to water, a similar decay behavior with yet different decay rates, and enhanced turbulence large scales and anisotropy. In the semidilute regime of XG, turbulence and mean flows are essentially damped by viscosity. The evolution of mean flow and turbulence indicators leads to the definition of several polymer concentration subregimes, within the dilute one. Critical concentrations around 20 ppm and 50 ppm are found, comparable to drag reduction characteristic concentrations
- …