16,550 research outputs found
An Analysis of Applications Development Systems for Remotely Sensed, Multispectral Data for the Earth Observations Division of the NASA Lyndon B. Johnson Space Center
An application development system (ADS) is examined for remotely sensed, multispectral data at the Earth Observations Division (EOD) at Johnson Space Center. Design goals are detailed, along with design objectives that an ideal system should contain. The design objectives were arranged according to the priorities of EOD's program objectives. Four systems available to EOD were then measured against the ideal ADS as defined by the design objectives and their associated priorities. This was accomplished by rating each of the systems on each of the design objectives. Utilizing the established priorities, it was determined how each system stood up as an ADS. Recommendations were made as to possible courses of action for EOD to pursue to obtain a more efficient ADS
Longitudinal Polarization at future Colliders and Virtual New Physics Effects
The theoretical merits of longitudinal polarization asymmetries of
electron-positron annihilation into two final fermions at future colliders are
examined, using a recently proposed theoretical description. A number of
interesting features, valid for searches of virtual effects of new physics, is
underlined, that is reminiscent of analogous properties valid on top of
resonance. As an application to a concrete example, we consider the case of a
model with triple anomalous gauge couplings and show that the additional
information provided by these asymmetries would lead to a drastic reduction of
the allowed domain of the relevant parameters.Comment: 18 pages and 1 figure. e-mail: [email protected]
Using the Big Ideas in Cosmology to Teach College Students
Recent advances in our understanding of the Universe have revolutionized our
view of its structure, composition and evolution. However, these new ideas have
not necessarily been used to improve the teaching of introductory astronomy
students. In this project, we have conducted research into student
understanding of cosmological ideas so as to develop effective web-based tools
to teach basic concepts important to modern cosmology. The tools are intended
for use at the introductory college level. Our research uses several
instruments, including open-ended and multiple choice surveys conducted at
multiple institutions, as well as interviews and course artifacts at one
institution, to ascertain what students know regarding modern cosmological
ideas, what common misunderstandings and misconceptions they entertain, and
what sorts of materials can most effectively overcome student difficulties in
learning this material. These data are being used to create a suite of
interactive, web-based tutorials that address the major ideas in cosmology
using real data. Having students engage with real data is a powerful means to
help students overcome certain misconceptions. Students master the scientific
concepts and reasoning processes that lead to our current understanding of the
universe through interactive tasks, prediction and reflection, experimentation,
and model building.Comment: 2012 Fermi Symposium proceedings - eConf C12102
The use of the Winograd matrix multiplication algorithm in digital multispectral processing
The Winograd procedure for matrix multiplication provides a method whereby general matrix products may be computed more efficiently than the normal method. The algorithm and the time savings that can be effected are described. A FORTRAN program is provided which performs a general matrix multiply according to this algorithm. A variation of this procedure that may be used to calculate Gaussian probability density functions is also described. It is shown how a time savings can be effected in this calculation. The extension of this method to other similar calculations should yield similar savings
Tree indiscernibilities, revisited
We give definitions that distinguish between two notions of indiscernibility
for a set \{a_\eta \mid \eta \in \W\} that saw original use in \cite{sh90},
which we name \textit{\s-} and \textit{\n-indiscernibility}. Using these
definitions and detailed proofs, we prove \s- and \n-modeling theorems and
give applications of these theorems. In particular, we verify a step in the
argument that TP is equivalent to TP or TP that has not seen
explication in the literature. In the Appendix, we exposit the proofs of
\citep[{App. 2.6, 2.7}]{sh90}, expanding on the details.Comment: submitte
The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development
Seed crops of the variety Estima were grown in each of 2 years using two planting dates, two harvest dates, two plant densities and two irrigation regimes to produce seed tubers which had experienced different cultural and environmental conditions. The effects of these treatments on tuber characteristics, sprout production and stem development in the ware crop were then determined in subsequent experiments using storage regimes of 3 and 10 °C. Time of planting the seed crop affected numbers of eyes, sprouts and above ground stems in the subsequent ware crop because environmental conditions around the time of tuber initiation appeared to alter tuber shape. Cooler, wetter conditions in the 7 days after tuber initiation were associated with tubers which were longer, heavier and had more eyes, sprouts and above ground stems. In contrast, the time of harvesting the seed crop did not affect tuber shape or numbers of above ground stems and there was no interaction with tuber size. The density of the seed crop had no effect on any character measured and irrigation well after tuber initiation did not affect tuber shape, numbers of sprouts or numbers of stems. Seed production treatments, which resulted in earlier dormancy break, were associated with tubers that produced more sprouts and above ground stems, in contrast to the conventional understanding of apical dominance. Storage at 3 °C gave fewer sprouts, a lower proportion of eyes with sprouts and fewer stems than storage at 10 °C. The major effects on stem production appear to result from environmental conditions at the time of tuber initiation of the seed crop and sprouting temperature
Neutron diffraction in a model itinerant metal near a quantum critical point
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02,
0.037) show that the ordering moment and the Neel temperature are continuously
suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The
wave vector Q of the spin density wave (SDW) becomes more incommensurate as x
increases in accordance with the two band model. At xc=0.037 we have found
temperature dependent, resolution limited elastic scattering at 4
incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to
2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction
measurements indicate that the electronic structure of Cr is robust, and that
tuning Cr to its QCP results not in the suppression of antiferromagnetism, but
instead enables new spin ordering due to novel nesting of the Fermi surface of
Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008
Predicting individual contrast sensitivity functions from acuity and letter contrast sensitivity measurements.
Contrast sensitivity (CS) is widely used as a measure of visual function in both basic research and clinical evaluation. There is conflicting evidence on the extent to which measuring the full contrast sensitivity function (CSF) offers more functionally relevant information than a single measurement from an optotype CS test, such as the Pelli-Robson chart. Here we examine the relationship between functional CSF parameters and other measures of visual function, and establish a framework for predicting individual CSFs with effectively a zero-parameter model that shifts a standard-shaped template CSF horizontally and vertically according to independent measurements of high contrast acuity and letter CS, respectively. This method was evaluated for three different CSF tests: a chart test (CSV-1000), a computerized sine-wave test (M&S Sine Test), and a recently developed adaptive test (quick CSF). Subjects were 43 individuals with healthy vision or impairment too mild to be considered low vision (acuity range of -0.3 to 0.34 logMAR). While each test demands a slightly different normative template, results show that individual subject CSFs can be predicted with roughly the same precision as test-retest repeatability, confirming that individuals predominantly differ in terms of peak CS and peak spatial frequency. In fact, these parameters were sufficiently related to empirical measurements of acuity and letter CS to permit accurate estimation of the entire CSF of any individual with a deterministic model (zero free parameters). These results demonstrate that in many cases, measuring the full CSF may provide little additional information beyond letter acuity and contrast sensitivity
- …