25 research outputs found

    Occupational Exposure to Pfiesteria Species in Estuarine Waters Is Not a Risk Factor for Illness

    Get PDF
    BACKGROUND: Exposure to the dinoflagellate Pfiesteria has, under certain circumstances, been associated with deficits in human learning and memory. However, uncertainties remain about the health risk of chronic, low-level exposures (as seen among occupationally exposed commercial fishermen), particularly in light of studies suggesting that Pfiesteria strains are widespread in the estuarine environment in the U.S. mid-Atlantic region. METHODS: We selected an initial cohort of 152 persons, including 123 persons with regular, occupational exposure to the Chesapeake Bay; 107 of the cohort members were followed for the full four summer “seasons” of the study. Cohort members were questioned biweekly about symptoms, and data were collected about the areas of the bay in which they worked. These latter data were matched with data on the presence or absence of Pfiesteria in each area, based on polymerase chain reaction analysis of > 3,500 water samples. Cohort members underwent neuropsychological testing at the beginning and end of each summer season. RESULTS: No correlation was found between work in an area where Pfiesteria was identified and specific symptomatology or changes on neuropsychological tests. CONCLUSIONS: Although high-level or outbreak-associated exposure to Pfiesteria species (or specific strains within a species) may have an effect on health, routine occupational exposure to estuarine environments in which these organisms are present does not appear to pose a significant health risk

    Low level methylmercury exposure affects neuropsychological function in adults

    Get PDF
    BACKGROUND: The neurotoxic effects of methylmercury (MeHg) have been demonstrated in both human and animal studies. Both adult and fetal brains are susceptible to the effects of MeHg toxicity. However, the specific effects of adult exposures have been less well-documented than those of children with prenatal exposures. This is largely because few studies of MeHg exposures in adults have used sensitive neurological endpoints. The present study reports on the results of neuropsychological testing and hair mercury concentrations in adults (>17 yrs) living in fishing communities of Baixada Cuiabana (Mato Grosso) in the Pantanal region of Brazil. METHODS: A cross-sectional study was conducted in six villages on the Cuiaba River. Participants included 129 men and women older than 17 years of age. They were randomly selected in proportion to the age range and number of inhabitants in each village. Questionnaire information was collected on demographic variables, including education, occupation, and residence history. Mercury exposure was determined by analysis of hair using flameless atomic absorption spectrophotometry. The neurocognitive screening battery included tests from the Wechsler Memory Scale and the Wechsler Adult Intelligence Scale, Concentrated Attention Test of the Toulouse-Pierron Factorial Battery, the Manual Ability Subtests of the Tests of Mechanical Ability, and the Profile of Mood States. RESULTS: Mercury exposures in this population were associated with fish consumption. The hair mercury concentration in the 129 subjects ranged from 0.56 to 13.6 μg/g; the mean concentration was 4.2 ± 2.4 micrograms/g and the median was 3.7 μg/g. Hair mercury levels were associated with detectable alterations in performance on tests of fine motor speed and dexterity, and concentration. Some aspects of verbal learning and memory were also disrupted by mercury exposure. The magnitude of the effects increased with hair mercury concentration, consistent with a dose-dependent effect. CONCLUSIONS: This study suggests that adults exposed to MeHg may be at risk for deficits in neurocognitive function. The functions disrupted in adults, namely attention, fine-motor function and verbal memory, are similar to some of those previously reported in children with prenatal exposures

    Long Term Memory Outcome of Repetitive, Low-Level Dietary Exposure to Domoic Acid in Native Americans

    No full text
    Domoic acid (DA) is a marine-based neurotoxin that, if ingested via tainted shellfish, is associated with Amnesic Shellfish Poisoning (ASP). These acute effects of elevated DA exposure in humans have been well described. In contrast, the long-term impacts of lower level, repetitive, presumably safe doses of DA (less than 20 ppm) are minimally known. Since Native Americans (NA) residing in coastal communities of the Pacific NW United States are particularly vulnerable to DA exposure, this study focuses on the long-term, 8-year memory outcome associated with their repeated dietary consumption of the neurotoxin. Measures of razor clam consumption, memory, clerical speed and accuracy, and depression were administered over eight years to 500 randomly selected adult NA men and women ages 18–64. Data were analyzed using GEE analyses taking into consideration the year of study, demographic factors, and instrumentation in examining the association between dietary exposure and outcomes. Findings indicated a significant but small decline in total recall memory within the context of otherwise stable clerical speed and accuracy and depression scores. There is reason to believe that a continuum of memory difficulties may be associated with DA exposure, rather than a unitary ASP syndrome
    corecore