22 research outputs found

    The Alzheimer's-related amyloid beta peptide is internalised by R28 neuroretinal cells and disrupts the microtubule associated protein 2 (MAP-2)

    No full text
    Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (A?) group of peptides, for which there appears to be no clear genetic basis. Analyses of human donor and animal eyes have identified retinal A? aggregates in retinal ganglion cells (RGC), the inner nuclear layer, photoreceptors as well as the retinal pigment epithelium. A? is also a major drusen constituent; found correlated with elevated drusen-load and age, with a propensity to aggregate in retinas of advanced AMD. Despite this evidence, how such a potent driver of neurodegeneration might impair the neuroretina remains incompletely understood, and studies into this important aspect of retinopathy remains limited. In order to address this we exploited R28 rat retinal cells which due to its heterogeneous nature, offers diverse neuroretinal cell-types in which to study the molecular pathology of A?. R28 cells are also unaffected by problems associated with the commonly used RGC-5 immortalised cell-line, thus providing a well-established model in which to study dynamic A? effects at single-cell resolution. Our findings show that R28 cells express key neuronal markers calbindin, protein kinase C and the microtubule associated protein-2 (MAP-2) by confocal immunofluorescence which has not been shown before, but also calretinin which has not been reported previously. For the first time, we reveal that retinal neurons rapidly internalised A?1-42, the most cytotoxic and aggregate-prone amongst the A? family. Furthermore, exposure to physiological amounts of A?1-42 for 24 h correlated with impairment to neuronal MAP-2, a cytoskeletal protein which regulates microtubule dynamics in axons and dendrites. Disruption to MAP-2 was transient, and had recovered by 48 h, although internalised A? persisted as discrete puncta for as long as 72 h. To assess whether A? could realistically localise to living retinas to mediate such effects, we subretinally injected nanomolar levels of oligomeric A?1-42 into wildtype mice. Confocal microscopy revealed the presence of focal A? deposits in RGC, the inner nuclear and the outer plexiform layers 8 days later, recapitulating naturally-occurring patterns of A? aggregation in aged retinas. Our novel findings describe how retinal neurons internalise A? to transiently impair MAP-2 in a hitherto unreported manner. MAP-2 dysfunction is reported in AMD retinas, and is thought to be involved in remodelling and plasticity of post-mitotic neurons. Our insights suggest a molecular pathway by which this could occur in the senescent eye leading to complex diseases such as AMD

    Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic

    Get PDF
    Four North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) field campaigns from winter 2015 through spring 2018 sampled an extensive set of oceanographic and atmospheric parameters during the annual phytoplankton bloom cycle. This unique dataset provides four seasons of open-ocean observations of wind speed, sea surface temperature (SST), seawater particle attenuation at 660 nm (cp,660, a measure of ocean particulate organic carbon), bacterial production rates, and sea-spray aerosol size distributions and number concentrations (NSSA). The NAAMES measurements show moderate to strong correlations (0.56 \u3c R \u3c 0.70) between NSSA and local wind speeds in the marine boundary layer on hourly timescales, but this relationship weakens in the campaign averages that represent each season, in part because of the reduction in range of wind speed by multiday averaging. NSSA correlates weakly with seawater cp,660 (R = 0.36, P \u3c\u3c 0.01), but the correlation with cp,660, is improved (R = 0.51, P \u3c 0.05) for periods of low wind speeds. In addition, NAAMES measurements provide observational dependence of SSA mode diameter (dm) on SST, with dm increasing to larger sizes at higher SST (R = 0.60, P \u3c\u3c 0.01) on hourly timescales. These results imply that climate models using bimodal SSA parameterizations to wind speed rather than a single SSA mode that varies with SST may overestimate SSA number concentrations (hence cloud condensation nuclei) by a factor of 4 to 7 and may underestimate SSA scattering (hence direct radiative effects) by a factor of 2 to 5, in addition to overpredicting variability in SSA scattering from wind speed by a factor of 5

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    An ex-vivo platform for manipulation and study of Retinal Pigment Epithelial (RPE) cells in long-term culture

    No full text
    Purpose: Impairment of the Retinal Pigment Epithelium (RPE) is strongly correlated with degenerative retinas including Age-related Macular Degeneration (AMD). Studies to elucidate dynamic intracellular processes underlying chronic degeneration of the RPE are limited by poor access of microscopes in the retinal space. Here we combine the use of an ex-vivo platform with live-confocal and ultrastructural imaging to study these events in individual RPE cells of mouse and human origin over long time periods. Our experimental model system provides a powerful tool to recapitulate chronic degenerative mechanisms in early AMD.Methods: Confluent monolayers of RPE cells were grown on a synthetic porous support which mimics the Bruch’s membrane. Cultures were maintained overs several months. We analysed morphology and barrier properties of the RPE monolayer, including expression of junctional complexes, trans-epithelial resistance (TER) as well as directional secretion of key RPE proteins. We used a combination of live-confocal microscopy, immunofluorescence, transmission electron microscopy (TEM), ELISA and biochemical approaches.Results: Ultrastructural studies show formation of a monolayer with features typical of RPE cells, including melanin pigmentation, apical microvilli and basal infoldings. Ultrastructural mapping of lysosomes and mitochondria provided convenient readouts of key organelles linked with RPE dysfunction at nanoscale resolution. A mobile custom-designed chamber allowed longitudinal analysis of live-cellular physiology using organelle-specific probes LysoSensor blue/yellow and MitoTracker in long-term cultures. For the first time we show that primary mouse RPE cells can be cultured for several weeks with an average TER measurement of 55 ±0.69 Ω/cm2. Directionally secreted proteins VEGF (Vascular Endothelial Growth Factor) and Aβ (Amyloid beta) were quantified using ELISA.Conclusions: Our ex-vivo model system which mimics the RPE/Bruch’s complex can be subject to a high degree of experimental manipulation, and is a powerful tool to investigate dynamic intracellular events as well as ultrastructural changes associated with chronic RPE degeneration in the ageing retina. This tool may be utilized to study RPE physiology at single-molecule resolution, providing mechanistic insights into early AMD

    A convenient protocol for establishing a human cell culture model of the outer retina

    Get PDF
    The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch’s membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies

    A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy

    No full text
    There are no disease-modifying treatments available for geographic atrophy (GA), the advanced form of dry age-related macular degeneration. Current murine models fail to fully recapitulate the features of GA and thus hinder drug discovery. Here we describe a novel mouse model of retinal degeneration with hallmark features of GA. We used an 810 nm laser to create a retinal lesion with central sparing (RLCS), simulating parafoveal atrophy observed in patients with progressive GA. Laser-induced RLCS resulted in progressive GA-like pathology with the development of a confluent atrophic lesion. We demonstrate significant changes to the retinal structure and thickness in the central unaffected retina over a 24-week post-laser period, confirmed by longitudinal optical coherence tomography scans. We further show characteristic features of progressive GA, including a gradual reduction in the thickness of the central, unaffected retina and of total retinal thickness. Histological changes observed in the RLCS correspond to GA pathology, which includes the collapse of the outer nuclear layer, increased numbers of GFAP + , CD11b + and FcγRI + cells, and damage to cone and rod photoreceptors. We demonstrate a laser-induced mouse model of parafoveal GA progression, starting at 2 weeks post-laser and reaching confluence at 24 weeks post-laser. This 24-week time-frame in which GA pathology develops, provides an extended window of opportunity for proof-of-concept evaluation of drugs targeting GA. This time period is an added advantage compared to several existing models of geographic atrophy

    A high fat "Western-style" diet induces AMD-like features in Wildtype mice

    No full text
    Scope: The intake of a “Western-style” diet rich in fats is linked with developing retinopathies including age-related macular degeneration (AMD). Wildtype mice are given a high fat diet (HFD) to determine how unhealthy foods can bring about retinal degeneration. Methods and results: Following weaning, female C57BL/6 mice are maintained on standard chow (7% kcal fat, n = 29) or a HFD (45% kcal fat, n = 27) for 12 months. Animals were sacrificed following electroretinography (ERG) and their eyes analyzed by histology, confocal immunofluorescence, and transmission electron microscopy. HFD mice become obese, but showed normal retinal function compared to chow-fed controls. However, diminished β3tubulin labeling of retinal cross-sections indicated fewer/damaged neuronal processes in the inner plexiform layer. AMD-linked proteins clusterin and TIMP3 accumulated in the retinal pigment epithelium (RPE) and Bruch's membrane (BrM). Neutral lipids also deposited in the outer retinae of HFD mice. Ultrastructural analysis revealed disorganized photoreceptor outer segments, collapsed/misaligned RPE microvilli, vacuoles, convoluted basolateral RPE infolds and BrM changes. Basal laminar-like deposits were also present alongside abnormal choroidal endothelial cells. Conclusions: We show that prolonged exposure to an unhealthy “Western-style” diet alone can recapitulate early-intermediate AMD-like features in wildtype mice, highlighting the importance of diet and nutrition in the etiology of sight-loss.</p

    Intraluminal acidity plays a key role in the function of lysosomes in RPE cells

    No full text
    Purpose : impaired lysosomal function in retinal pigment epithelial (RPE) cells is linked with incomplete photoreceptor outer segment (POS) degradation and their accumulation as lipofuscin; a well-defined pathway of RPE atrophy in Age-Related Macular Degeneration (AMD). Here, we tested the hypothesis that intraluminal lysosomal acidity (pH) is a key determinant in POS degradation that becomes impaired in AMD.Methods : the molecular probe Lyso-pHluorin, which increases in fluorescence with diminishing acidification, was expressed in RPE (ARPE-19) cells and exposed to oxidative stress (10mM H2O2, 24Hrs) or Aβ (1µM human oligomeric Aβ1-42, 3Hrs) which is elevated in aged/AMD retinas. Cells were then synchronously fed POS (4µg/cm2). Parallel cultures were fed OxPOS, which were produced by UV cross-linked POS that becomes sequestered in lysosomes. RPE cells without insults acted as controls. Bafilomycin A1 was used to obtain maximal Lyso-pHluorin response (positive control). Whilst these studies were carried out after fixation, the use of CypHer5E conjugated POS provided insights into dynamic changes to lysosomal pH in living RPE. Co-labelling with LysoTracker Green DND-26 provided readouts of lysosomal size.Results : POS (p=0.0077) as well as OxPOS (p=0.0025) co-localisation to lysosomes significantly diminished their intraluminal acidity compared to lysosomes without cargos. Interestingly, there was no appreciable difference in the fluorescence intensity of lysosomes with POS vs. OxPOS cargos. Lysosomal acidity also diminished after exposure to oxidative stress and Aβ, whilst CypHer5E showed dynamic alterations to lysosomal acidity.Conclusions: our studies revealed that intraluminal lysosomal acidity becomes significantly diminished following POS and OxPOS accumulation. However, POS is rapidly degraded in healthy RPE, whilst OxPOS is known to be sequestered in RPE lysosomes for prolonged periods (akin to lipofuscin). Exposure to AMD-linked disease pathways also impaired lysosomal acidity. Our findings support a key role for intraluminal lysosomal pH in the ability to effectively degrade POS cargos, revealing novel mechanistic insights into the pathogenesis of AMD

    Ex-vivo models of the Retinal Pigment Epithelium (RPE) in long-term culture faithfully recapitulate key structural and physiological features of native RPE

    No full text
    The Retinal Pigment Epithelium (RPE) forms the primary site of pathology in several blinding retinopathies. RPE cultures are being continuously refined so that dynamic disease processes in this important monolayer can be faithfully studied outside the eye over longer periods. The RPE substrate, which mimics the supportive Bruch’s membrane (BrM), plays a key role in determining how well in-vitro cultures recapitulate native RPE cells. Here, we evaluate how two different types of BrM substrates; (1) a commercially-available polyester transwell membrane, and (2) a novel electrospun scaffold developed in our laboratory, could support the generation of realistic RPE tissues in culture. Our findings reveal that both substrates were capable of supporting long-lasting RPE monolayers with structural and functional specialisations of in-situ RPE cells. These cultures were used to study autofluorescence and barrier formation, as well as activities such as outer-segment internalisation/trafficking and directional secretion of key proteins; the impairment of which underlies retinal disease. Hence, both substrates fulfilled important criteria for generating authentic in-vitro cultures and act as powerful tools to study RPE pathophysiology. However, RPE grown on electrospun scaffolds may be better suited to studying complex RPE-BrM interactions such as the formation of drusen-like deposits associated with early retinal disease
    corecore