22 research outputs found

    A meta-analysis comparing cognitive function across the mood/psychosis diagnostic spectrum

    Get PDF
    Background The nature and degree of cognitive impairments in schizoaffective disorder is not well established. The aim of this meta-analysis was to characterise cognitive functioning in schizoaffective disorder and compare it with cognition in schizophrenia and bipolar disorder. Schizoaffective disorder was considered both as a single category and as its two diagnostic subtypes, bipolar and depressive disorder. Methods Following a thorough literature search (468 records identified), we included 31 studies with a total of 1685 participants with schizoaffective disorder, 3357 with schizophrenia and 1095 with bipolar disorder. Meta-analyses were conducted for seven cognitive variables comparing performance between participants with schizoaffective disorder and schizophrenia, and between schizoaffective disorder and bipolar disorder. Results Participants with schizoaffective disorder performed worse than those with bipolar disorder (g = −0.30) and better than those with schizophrenia (g = 0.17). Meta-analyses of the subtypes of schizoaffective disorder showed cognitive impairments in participants with the depressive subtype are closer in severity to those seen in participants with schizophrenia (g = 0.08), whereas those with the bipolar subtype were more impaired than those with bipolar disorder (g = −0.23) and less impaired than those with schizophrenia (g = 0.29). Participants with the depressive subtype had worse performance than those with the bipolar subtype but this was not significant (g = 0.25, p = 0.05). Conclusion Cognitive impairments increase in severity from bipolar disorder to schizoaffective disorder to schizophrenia. Differences between the subtypes of schizoaffective disorder suggest combining the subtypes of schizoaffective disorder may obscure a study's results and hamper efforts to understand the relationship between this disorder and schizophrenia or bipolar disorder

    Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia

    Get PDF
    Importance About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n=10 501) and individuals with non-TRS (n=20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r² = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r² = 1.09%; P = .04). Conclusions and Relevance In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.Funding/Support: This work was supported by Medical Research Council Centre grant MR/ L010305/1, Medical Research Council Program grant MR/P005748/1, and Medical Research Council Project grants MR/L011794/1 and MC_PC_17212 to Cardiff University and by the National Centre for Mental Health, funded by the Welsh Government through Health and Care Research Wales. This work acknowledges the support of the Supercomputing Wales project, which is partially funded by the European Regional Development Fund via the Welsh Government. Dr Pardiñas was supported by an Academy of Medical Sciences Springboard Award (SBF005\1083). Dr Andreassen was supported by the Research Council of Norway (grants 283798, 262656, 248980, 273291, 248828, 248778, and 223273); KG Jebsen Stiftelsen, South-East Norway Health Authority, and the European Union’s Horizon 2020 Research and Innovation Programme (grant 847776). Dr Ajnakina was supported by an National Institute for Health Research postdoctoral fellowship (PDF-2018-11-ST2-020). Dr Joyce was supported by the University College London Hospitals/UCL University College London Biomedical Research Centre. Dr Kowalec received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement (793530) from the government of Canada Banting postdoctoral fellowship programme and the University of Manitoba. Dr Sullivan was supported by the Swedish Research Council (Vetenskapsrådet, D0886501), the European Union’s Horizon 2020 programme (COSYN, 610307) and the US National Institute of Mental Health (U01 MH109528 and R01 MH077139). The Psychiatric Genomics Consortium was partly supported by the National Institute Of Mental Health (grants R01MH124873). The Sweden Schizophrenia Study was supported by the National Institute Of Mental Health (grant R01MH077139). The STRATA consortium was supported by a Stratified Medicine Programme grant to Dr MacCabe from the Medical Research Council (grant MR/L011794/1), which funded the research and supported Drs Pardiñas, Smart, Kassoumeri, Murray, Walters, and MacCabe. Dr Smart was supported by a Collaboration for Leadership in Applied Health Research and Care South London at King’s College Hospital National Health Service Foundation Trust. The AESOP (US) cohort was funded by the UK Medical Research Council (grant G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Genetics and Psychosis project (London, UK) cohort was funded by the UK National Institute of Health Research Specialist Biomedical Research Centre for Mental Health, South London and the Maudsley National Health Service Mental Health Foundation Trust (SLAM) and the Institute of Psychiatry, Psychology, and Neuroscience at King’s College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community’s Seventh Framework program (HEALTH-F2-2009-241909, project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (grants 320030_135736/1, 320030-120686, 324730-144064, 320030-173211, and 171804); the National Center of Competence in Research Synaptic Bases of Mental Diseases from the Swiss National Science Foundation (grant 51AU40_125759); and Fondation Alamaya. The Oslo (Norway) cohort was funded by the Research Council of Norway (grant 223273/F50, under the Centers of Excellence funding scheme, 300309, 283798) and the South-Eastern Norway Regional Health Authority (grants 2006233, 2006258, 2011085, 2014102, 2015088, and 2017-112). The Paris (France) cohort was funded by European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (grant NU20-04-00393). The Santander (Spain) cohort was funded by the following grants to Dr Crespo-Facorro: Instituto de Salud Carlos III (grants FIS00/3095, PI020499, PI050427, and PI060507), Plan Nacional de Drogas Research (grant 2005-Orden sco/3246/2004), SENY Fundatio Research (grant 2005-0308007), Fundacion Marques de Valdecilla (grant A/02/07, API07/011) and Ministry of Economy and Competitiveness and the European Fund for Regional Development (grants SAF2016-76046-R and SAF2013-46292-R). The West London (UK) cohort was funded by The Wellcome Trust (grants 042025, 052247, and 064607)

    Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank

    Get PDF
    Background: Rare copy number variants (CNVs) are associated with risk of neurodevelopmental disorders characterised by varying degrees of cognitive impairment, including schizophrenia, autism spectrum disorder and intellectual disability. However, the effects of many individual CNVs in carriers without neurodevelopmental disorders are not yet fully understood, and little is known about the effects of reciprocal copy number changes of known pathogenic loci. Aims We aimed to analyse the effect of CNV carrier status on cognitive performance and measures of occupational and social outcomes in unaffected individuals from the UK Biobank. Method: We called CNVs in the full UK Biobank sample and analysed data from 420 247 individuals who passed CNV quality control, reported White British or Irish ancestry and were not diagnosed with neurodevelopmental disorders. We analysed 33 pathogenic CNVs, including their reciprocal deletions/duplications, for association with seven cognitive tests and four general measures of functioning: academic qualifications, occupation, household income and Townsend Deprivation Index. Results: Most CNVs (24 out of 33) were associated with reduced performance on at least one cognitive test or measure of functioning. The changes on the cognitive tests were modest (average reduction of 0.13 s.d.) but varied markedly between CNVs. All 12 schizophrenia-associated CNVs were associated with significant impairments on measures of functioning. Conclusions CNVs implicated in neurodevelopmental disorders, including schizophrenia, are associated with cognitive deficits, even among unaffected individuals. These deficits may be subtle but CNV carriers have significant disadvantages in educational attainment and ability to earn income in adult life

    Rare copy number variations are associated with poorer cognition in schizophrenia

    Get PDF
    Background Cognitive impairment in schizophrenia is a major contributor to poor outcomes yet its causes are poorly understood. Some rare copy number variants (CNVs) are associated with schizophrenia risk and impact cognition in healthy populations but their contribution to cognitive impairment in schizophrenia has not been investigated. We examined the effect of 12 schizophrenia CNVs on cognition in those with schizophrenia. Methods General cognitive ability was measured using the MATRICS composite z-score in 875 schizophrenia cases, and in a replication sample of 519 schizophrenia cases using WAIS Full-Scale IQ. Using linear regression we tested for association between cognition and schizophrenia CNV status, covarying for age and sex. In addition, we tested whether CNVs hitting genes in schizophrenia enriched gene sets (loss of function intolerant or synaptic gene sets) were associated with cognitive impairment. Results 23 schizophrenia CNV carriers were identified. Schizophrenia CNV carriers had lower general cognitive ability than non-schizophrenia CNV carriers in discovery (β=-0.66, 95%CI = -1.31 to -0.01) and replication samples (β=-0.91, 95%CI =-1.71 to -0.11), and after meta-analysis (β=-0.76, 95%CI=-1.26 to -0.25, p=0.003). CNVs hitting loss of function intolerant genes were associated with lower cognition (β= -0.15, 95%CI=-0.29 to -0.001, p=0.048). Conclusions In those with schizophrenia, cognitive ability in schizophrenia CNV carriers is 0.5-1.0 standard deviations below non-CNV carriers, which may have implications for clinical assessment and management. We also demonstrate that rare CNVs hitting genes intolerant to loss of function variation lead to more severe cognitive impairment, above and beyond the effect of known schizophrenia CNVs

    Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection

    Get PDF
    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants with Treatment Resistance in Schizophrenia

    Get PDF
    Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10501) and individuals with non-TRS (n = 20325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85490 participants (48635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P =.001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P =.04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance

    Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia

    No full text
    Importance About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Conclusions and Relevance In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance. Design, Setting, and Participants Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04)
    corecore