16 research outputs found

    GWAS of Barley Phenotypes Established Under Future Climate Conditions of Elevated Temperature, CO2, O3 and Elevated Temperature and CO2 Combined

    Get PDF
    AbstractClimate change is likely to decrease crop yields worldwide. Developing climate resilient cultivars is one way to combat this production scarcity, however, little is known of crop response to future climate conditions and in particular the variability within crops.In Scandinavia, barley is widely cultivated, but yields have stagnated since the start of this century. In this study we cultivated 138 spring barley accessions in a climate phytotron under four treatments mimicking forecasted levels of temperature, carbon dioxide concentration ([CO2]) and ozone ([O3]) at the end of the 21st century1. The ambient control had 19/12°C (day/night) and [CO2] at 385ppm. Three single-factor treatments had elevated temperature +5°C day/night, [CO2] at 700ppm or [O3] at 120 ppb, and in a two-factor treatment the combination of elevated temperature and [CO2] was applied.Treatment effects were assessed on grain yield, grain protein concentration, grain protein harvested, number of grains, number of ears, aboveground vegetative biomass and harvest index. In addition, stability of the production was calculated over the applied treatments for the assessed parameters.In the climate scenario of elevated temperature and [CO2] the grain yield of barley decreased 29% and harvested grain protein declined 22%. Vast variation was identified among the individual barley accessions, which should be exploited by plant breeders in the development of climate resilient cultivars.A genome-wide association study (GWAS) of recorded phenotypes and 3967 SNP-markers identified 60 marker-trait associations (-logp>2.95)2. Markers were found associated with grain yield under all three single factor treatments temperature, [CO2] and [O3], as well as with stability over treatments.To our knowledge, this is the first study that evaluates numerous barley accessions under future climate conditions and identifies candidate markers for abiotic stress tolerance - markers that could be used in the development of cultivars to secure future primary production

    Infection of barley by E. graminis:effect of Mlo-virulence and Mlo-resistance

    No full text

    Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley

    Get PDF
    Barley (Hordeum vulgare) was grown in different climatic environments with elevated CO2 (700 vs 385 ppm), O3 (60/90 vs 20 ppb) and temperature (24/19 vs 19/12°C day/night) as single factors and in combinations, to evaluate the impact of these climatic factors on photosynthesis and susceptibility to powdery mildew and spot blotch disease. No significant increase in net CO2 assimilation rate was observed in barley grown under elevated CO2 at ambient temperature. However, this rate was positively stimulated under elevated temperature together with a slightly higher potential quantum efficiency of PSII, both at ambient and elevated CO2, suggesting that photosynthesis was not limited by CO2 at ambient temperature. When growing under elevated temperature or O3, infection by the biotrophic powdery mildew fungus decreased, whereas disease symptoms and growth of the toxin-secreting hemibiotrophic spot blotch fungus increased compared to ambient conditions, implying that climate-induced changes in disease severity could be linked to the trophic lifestyle of the pathogens. Elevated CO2 decreased powdery mildew infection but had no effect on spot blotch disease compared to ambient condition. However, the effect of elevated CO2, O3 and temperature did not act in an additive manner when combined. This led to a surprising disease development in the combination treatments, where powdery mildew infection increased despite the individual reducing effect of the climatic factors, and spot blotch disease decreased despite the individual promoting effect of temperature and ozone, emphasizing the importance of conducting multifactorial experiments when evaluating the potential effects of climate change

    Eco-efficient production of spring barley in a changed climate: a Life Cycle Assessment including primary data from future climate scenarios.

    Get PDF
    The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding and including earlier sowing and cultivar selection as measures of adaptation to a changed climate. A baseline scenario describing the current spring barley cultivation in Denmark was defined, and the expected main deviations were identified (differences in pesticide treatment index, modifications in nitrate leaching and change in crop yield). The main input data originate from experiments, where spring barley cultivars were cultivated in a climate phytotron under controlled and manipulated treatments. Effects of changed climate on both crop productivity and crop quality were represented, as well as impacts of predicted extreme events, simulated through a long heat-wave. LCA results showed that the changed climatic conditions will likely increase the negative impacts on the environment from Danish spring barley cultivation, since all environmental impact categories experienced increased impact for all investigated scenarios, except under the very optimistic assumption that the pace of yield improvement by breeding in the future will be the same as it was in the last decades. The main driver of the increased environmental impact was identified as the reduction in crop yield. Therefore, potential adaptation strategies should mainly focus on maintaining or improving crop productivity. The LCA also showed that selection of proper cultivars for future climate conditions including the challenge from extreme events is one of the most effective ways to reduce future environmental impacts of spring barley. Finally, if yield measurements are based on relative protein content, the negative effects of the future climate seem to be reduced

    Adaptation of spring barley for extreme climates

    No full text
    201

    Deciphering Molecular Host-Pathogen Interactions During Ramularia Collo-Cygni Infection on Barley

    Get PDF
    Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen
    corecore