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Abstract 

The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation 

for malting in Denmark in a future changed climate (700 ppm [CO2] and +5ºC) through Life 

Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both 

excluding and including earlier sowing and cultivar selection as measures of adaptation to a 

changed climate. A baseline scenario describing the current spring barley cultivation in 

Denmark was defined, and the expected main deviations were identified (differences in 

pesticide treatment index, modifications in nitrate leaching and change in crop yield). The 

main input data originate from experiments, where spring barley cultivars were cultivated in a 

climate phytotron under controlled and manipulated treatments. Effects of changed climate on 

both crop productivity and crop quality were represented, as well as impacts of predicted 

extreme events, simulated through a long heat-wave. LCA results showed that the changed 

climatic conditions will likely increase the negative impacts on the environment from Danish 

spring barley cultivation, since all environmental impact categories experienced increased 

impact for all investigated scenarios, except under the very optimistic assumption that the 

pace of yield improvement by breeding in the future will be the same as it was in the last 

decades. The main driver of the increased environmental impact was identified as the 

reduction in crop yield. Therefore, potential adaptation strategies should mainly focus on 

maintaining or improving crop productivity. The LCA also showed that selection of proper 

cultivars for future climate conditions including the challenge from extreme events is one of 

the most effective ways to reduce future environmental impacts of spring barley. Finally, if 

yield measurements are based on relative protein content, the negative effects of the future 

climate seem to be reduced. 

 

Keywords: life cycle assessment; spring barley; climate change; crop yield; crop quality; 

adaptation  

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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1. Introduction  

Crop production is expected to respond differently to climate change according to latitude. 

From the survey by Olesen et al. (2011) involving European agri-climatic and agronomy 

experts, northern and north-western Europe emerged as the areas with main gains and 

challenges with regard to climate change. The implications of climate change for crop 

production are manifold, including both direct effects on crop productivity and crop quality 

through changes in temperature, concentration of carbon dioxide [CO2] in the atmosphere and 

rainfall, as well as indirect effects on crop yields due to pests and pathogens (Newton et al., 

2011) or environmental pollution such as leaching of fertilizer and pesticides (Olesen et al., 

2011). The direct climate change impacts on crop productivity have dominated as research 

topic (Estes et al., 2013; Olesen and Bindi, 2002; Olesen et al., 2004). Still a lot of knowledge 

is needed on more diverse sets of genotypes of many crop species, but the research on the 

combined effect of changes in climatic factors on pests, weeds and plant diseases is even 

more scarce (Porter et al., 2013). Climate change impacts on crop quality are also rarely 

assessed, even though this may have increasing relevance due to its consequences to food 

security (Olesen et al., 2011). Furthermore, little attention has been given to the effects of 

changes in frequency of extreme events (Olesen et al., 2011), despite the likelihood that heat 

waves and torrential rains will occur with a higher frequency and longer duration in the 

future, as reported by the Intergovernmental Panel on Climate Change (Collins et al., 2013). 

Most studies addressing the effects of climate change on cropping systems use crop 

simulation modelling (Doltra et al., 2012; Estes et al., 2013; Olesen and Bindi, 2002; Smith et 

al., 2013; White et al., 2011). However, there has been little effort to include effects of both 

crop growth and environmental sustainability from an ecosystem perspective (Hörtenhuber et 

al., 2014; Olesen et al., 2011; Pittelkow et al., 2013; Tendall and Gaillard, 2015). The 

interlinked role of sustainable management of natural resources and climate actions has been 

strengthened in the recently revised European Common Agricultural Policy (DG Agriculture 

and Rural Development, 2013). Moreover, in a Northern European country like Denmark the 

commitment to sustainable agriculture is one of the pillars of the national agricultural policy 

(Natur- og Landbrugskommissionen, 2013).  

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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In Denmark, almost half of the cropland is cultivated with barley (Hordeum vulgare L.), 

respectively 42% spring and 7% winter barley (Statistics Denmark, 2014a), and this crop is 

expected to have an important share of cropland in the future as well. Spring barley is 

cultivated for two main purposes in Denmark: production of feed grain and barley malt. The 

latter is the preferred option from the farmers’ economic perspective, therefore their first 

choice is to use cultivars with a lower protein content which is more suited for malt. If they 

are not able to achieve the sufficient quality for malt, they will sell their harvest as fodder 

barley at a lower price. To develop strategies for a more sustainable Danish agriculture, the 

assessment of the environmental impacts associated with spring barley production system for 

malting in a changed climate earns high priority.  

In developing sustainability-oriented agricultural practices Foley et al. (2011) 

recommend four principles: (1) adopting eco-efficient solutions; (2) addressing trade-offs 

through improved management decisions; (3) investigating multiple paths, e.g. conventional 

agriculture, genetic modification and organic farming; (4) increasing the resilience of the food 

systems. The tool which can holistically assess all these four issues is Life Cycle Assessment 

(LCA), which aims to quantify the potential environmental impacts of a product system’s 

inputs and outputs during its life cycle (ISO, 2006a). Due to its systemic approach it is 

capable to avoid the shifting of a potential environmental burden between life cycle stages or 

different categories of environmental impact. Recently, LCA has been applied in a number of 

studies to compare current barley production and management alternatives (Fallahpour et al., 

2012; Fedele et al., 2014; Korsaeth et al., 2014; Roer et al., 2012), but the use of LCA to 

predict how the environmental impacts of barley cultivation will respond to changing climate 

has been very limited (Dijkman, 2013; Tendall and Gaillard, 2015). The definition of LCA-

based forecasting scenarios is not straightforward, since predicting future system adaptations 

and gathering data not yet available are challenging tasks. Dijkman (2013) modelled the 

environmental impacts of barley cultivation in Denmark under current and future (year 2050) 

climatic conditions according to IPCC 2007 A1B scenario. Barley yield emerged as the main 

driver for the impacts, and future crop yields were estimated through interpolations from the 

dynamic FASSET crop model (Doltra et al., 2012). Since the lack of primary data is one of 

the most important drawbacks affecting the reliability of LCA studies (Reap et al., 2008), and 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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particularly agricultural LCAs (Notarnicola et al., 2012), the assessment of environmental 

impacts of future systems should rely on measured data from the system studied. This is 

rarely possible for future agricultural systems, but in our study crop yield and crop quality 

data from manipulated experiments, where plant material was screened in realistic future 

climate scenarios and exposed to realistic extreme events, have been the main input to the 

LCA. Basing LCA on primary data is the key to provide policy makers with reliable 

suggestions for prioritizing interventions aiming to climate change adaptation. However we 

acknowledge that also non-climatic, socio-economic and political factors will influence the 

adaptation of agricultural systems to climate change, but the implications of these aspects lie 

outside the scope of our study, which has two objectives:  

1. To assess the eco-efficiency of spring barley cultivation in a future changed climate in 

Denmark using LCA; the main input data originate from experiments mimicking a worst 

case climate change, i.e. double [CO2] and +5ºC, expected in Northern Europe by the end 

of the century according to IPCC 2007 A1FI scenario. Both direct and indirect effects of 

changed climate on crop cultivation were considered, as well as the influence of climate 

change on crop quality, and implications of heat waves as an example of extreme events;  

2. To compare different scenarios for spring barley cultivation under a future climate, both 

excluding and including adaptation measures, such as earlier sowing and cultivar 

selection, in order to provide policy makers with means to control the potential 

environmental impacts of this production system. 

  

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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2. Materials and methods: 

The LCA methodology was applied to this case study by following the ISO 14040-44 

standards (ISO, 2006a, 2006b). An LCA study consists of four phases: (1) goal and scope 

definition, (2) life cycle inventory, (3) life cycle impact assessment and (4) life cycle 

interpretation. The approach we followed to deal with the quantification of many unknown 

aspects and define consistent future scenarios, was based on the following steps: 

1. Definition of a baseline scenario describing the current spring barley cultivation in 

Denmark;  

2. Identification of the main deviations from the current cultivation leading to the definition 

of a set of alternative scenarios under future climate conditions; 

3. Comparison of the alternative scenarios to identify the main drivers of change in future 

environmental impacts and suggest adaptive measures to compensate for possible 

deviations. 

2.1 Goal and scope definition 

The goal of the LCA study is to quantify the potential environmental impacts of spring barley 

production for malting in Denmark under a changed climate (700 ppm [CO2] and +5 °C), a 

realistic scenario in the second half of this century if the greenhouse gases (GHG) emissions 

are not reduced significantly. This change of climate is in accordance to the IPCC 2007 A1FI 

scenario describing a future world of very rapid economic growth, a peak in global population 

in mid-century, and the rapid introduction of new and more efficient technologies based on 

fossil intensive energy system (IPCC, 2007). This increase in temperature is aligned with the 

RCP8.5 (Representative Concentration Pathways) of the IPCC Fifth Assessment Report 

(Collins et al., 2013), even though there is no exact correspondence, as the cumulative CO2 

emission of RCP8.5 is almost double the value considered in the present study. The reason 

motivating this study was to provide policy makers with means for adapting future spring 

barley cultivation towards a more sustainable production, based on a quantitative assessment 

of potential environmental impacts. The product system, i.e. “the collection of unit processes 

performing a defined function” (ISO, 2006a) as defined by the functional unit, which is the 

production of 1 kg of DM (dry matter) barley grain for malting, includes all the agricultural 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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operations needed to perform this function in a so-called “from cradle to farm gate” 

perspective. This functional unit is a reference flow to which the inputs and outputs of the 

product system are related, both in terms of material flows and potential environmental 

impacts. For crop systems, a mass-based functional unit, rather than an area-related functional 

unit is preferred in order to be capable of assessing differences in land use efficiency 

(Brentrup et al., 2004; Hayashi, 2013). The system boundaries determine, which unit 

processes shall be included within the LCA. Figure 1 describes the system boundaries of our 

study using a process flow diagram, including the unit processes and their inter-relationships 

and main inputs and outputs. The unit processes included in the system boundaries are those 

commonly considered in cradle to farm gate LCA studies on barley (Fedele et al., 2014; 

Korsaeth et al., 2014; Roer et al., 2012), i.e. all the field work related processes. The main 

distinction in spring barley cultivation for feed grain versus malt resides in the different 

application of N fertilizer. Besides, cultivars chosen with malting as the primary target 

normally should have a lower protein contents than those used for feed. Therefore, fertilizer 

application should also be adjusted, so that the malting barley will hold a protein contents 

between 9.5-11 % (Knowledge Centre for Agriculture, 2013). The field related processes can 

be subdivided into four main steps: seed bed preparation (ploughing and harrowing); 

establishment (fertilizer application, and combined sowing and harrowing), external control 

agents (herbicide, fungicide and insecticide application), finalization (harvesting and drying), 

and finally the emissions from the field distinguished between air and water.  

2.2 Life Cycle Inventory (LCI) 

The LCI is an inventory of input and output data related to the functional unit for the system 

being studied. It is usually performed trough the collection of historical data at regional or 

national scale describing the product system (Roer et al., 2012) or using data from case-

specific farms (Fedele et al., 2014). In the present study we refer to average Danish spring 

barley cultivation in sandy loam soil, i.e. JB6 of the Danish soil classification (Greve, 2011) 

assuming conventional farming techniques. The sources of data are manifold: primary data on 

crop yield from experiments in future climate scenarios (Ingvordsen, 2014), as well as 

National databases and published data valid within the geographic scope of the study, i.e. 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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Denmark (Hamelin et al., 2012; Knowledge Centre for Agriculture, 2013). A summary of the 

main input according to the selected unit processes and datasets used is reported in Table 1 for 

the baseline scenario. The unit process data are referring to cultivation area of 1 ha and in the 

modelling translated into an inventory for the production of the functional unit. 

2.2.1 Experimental data  

A novel aspect of the data collection is that the information on yield and quality of the crop is 

primary data coming from growing the crop under changed climate conditions. Experimental 

data were obtained from cultivation of spring barley cultivars in the climate phytotron 

RERAF (Risø Environmental Risk Assessment Facility). In controlled treatments, the effect 

of elevated temperature, [CO2] and [O3] as single factors or in combination have been 

assessed on grain yield. Furthermore, an experiment mimicking an extreme heat-wave around 

flowering, i.e. the most critical phase for grain set and yield determination, has been 

performed. The details of the experimental set ups are provided in (Ingvordsen, 2014) and 

Ingvordsen et al. (2015). For the LCA study, we considered a subset of data, including 13 

cultivars listed in Table 2 for which a complete set of experiments has been performed, both 

under ambient conditions (400 ppm [CO2], 19/12 ˚C day/night), double-factor treatment (700 

ppm [CO2], 24/17 ˚C day/night) and a long heat-wave (700 ppm [CO2], 33/28 ˚C day/night 

for 10 days). The light regime was 16 hours of light and 8 hours of dark; the temperature was 

kept constant during the day and during the night, and the experimental values corresponded 

well with the set point values (Ingvordsen et al., 2015). Among these cultivars we further 

selected the five cultivars with the highest grain yield under the double-factor treatment, and 

considered them as a separate group, as reported in Table 2.  

Data gathered from RERAF were originally measured in terms of grain yield (g/plant) and 

were therefore rescaled to represent field data. We performed the conversion considering a 

pot size of 23 x 23 cm and 8 plants/pot, with resulting plant density in RERAF of 151.23 

plants/m
2
, used as converting factor to have yield estimate per m

2
. Plant density is somewhat 

higher in the field, but previous studies have shown that seeding rates of 120-280 seed/m
2 

 did 

not affect grain yield in barley, wheat and oat (Schillinger, 2005). Crop yield data calculated 

with this procedure refer to ideal, consistent experimental conditions in the climate phytotron 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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contrary to those typically fluctuating in the field; therefore cannot be used as such. The 

average crop yield for spring barley in loamy sand soil in the 5-years interval 2009‒2013 in 

Denmark was 5700 kg/ha (Danish Ministries of Food Agriculture and Fisheries, 2013, 2012, 

2011, 2010, 2009). As a consequence crop yield values from RERAF in the combined 

treatment should be downsized by a scaling factor of 55% (given by the ratio of actual crop 

yield to experimental crop yield from the ambient RERAF treatment and then multiplied with 

crop yield from the double-factor RERAF treatment), for both sets of cultivars considered. 

The heat-wave experiment was performed using the same cultivars, but as an experiment 

separated in time and space from the baseline experiment. Therefore, our approach was to 

calculate the deviation of crop yield in relative terms, between the double treatment without 

and with heat-wave, for both sets of cultivars. Up-scaling data from RERAF to the field is a 

valid option, provided that the proportion between yield in the ambient and the future climate 

scenarios in RERAF will also apply to the present versus future field conditions.  

    2.2.2 Agricultural operations 

Based on Hamelin et al. (2012) data for the agricultural operations (ploughing, harrowing, 

fertilizer application, sowing and harrowing, pesticide application, harvesting and grain 

drying) were taken from the ecoinvent database (Nemecek and Kägi, 2007). According to 

Dijkman (2013) and Hamelin et al., (2012), we adjusted diesel consumption to Danish 

conditions based on the norm values presented by Dalgaard et al. (2001) and assumed 

lubricating oil consumption for the machinery as a fixed amount (0.62%) of the diesel applied 

(Roer et al., (2012). The amount of fertilizer was based on Danish regulations, considering an 

average of the nitrogen (N), phosphorus (P) and potassium (K) applied on the field on a 5-

years interval in the period 2009‒2013 (Danish Ministries of Food Agriculture and Fisheries, 

2013, 2012, 2011, 2010, 2009). In accordance with Hamelin et al. (2012) we assumed that 

half of the N demand is fulfilled by mineral fertilizer and half by animal manure, with 

respectively 50% pig slurry and 50% dairy cattle slurry. This assumption is representative of 

the average Danish situation, considering that between 2008‒2012 the share of Danish farms 

with pig and cattle has been equal to 45% (Statistics Denmark, 2014b). In the LCI modelling 

we considered manure as a waste of animal production systems, therefore assuming its 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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production “free” of environmental burden (Nemecek et al., 2011b; Röös et al., 2011), i.e. the 

emissions from production of manure are allocated to the animal production system, and were 

not considered in the present study. We followed the approach by Hamelin et al. (2012) and 

calculated the composition of both pig slurry and dairy cattle slurry ex-storage through mass 

balances for the 5-years interval 2009‒2013 (Poulsen, 2013, 2012a, 2012b, 2010, 2009), 

considering that for manure not all the applied N will, during the growing period, end up in an 

inorganic form available to plants. We took into account the values of the so-called “N 

utilization efficiency factors” defined by law for a variety of manure types, i.e. 75% for pig 

slurry and 70% for cow slurry (Danish Ministries of Food Agriculture and Fisheries, 2012). 

Following Hamelin et al. (2012) we assumed that slurry spreading is performed by trail hose 

application, i.e. representative of average Danish conditions. The mineral fertilizer used, both 

in practice and in the experimental set, is an NPK fertilizer in the distribution 21‒3‒10 with S 

and Mg, but was modelled based on single nutrient fertilizers, namely calcium ammonium 

nitrate (CAN), single superphosphate (SSP) and potassium chloride, since the production of 

NPK fertilizer is not included in the ecoinvent database (Nemecek and Kägi, 2007). The 

amount of each single nutrient fertilizer was calculated as a difference between the current 

upper ceiling for the amount allowed by the Danish regulation and the amount provided by 

the animal slurry. Regarding K content, since the need was fulfilled by animal slurry, no 

further K fertilizer was added, following the approach suggested by Hamelin et al. (2012). 

External control agents include the application of herbicides, fungicides, and insecticides. 

Data on the production of mineral fertilizers and pesticide were taken from ecoinvent database 

(Sutter, 2010). The choice of active agents, dosages applied and number of sprayings was 

based on general spraying recommendations (pers. comm. M. Haastrup, Knowledge Centre 

for Agriculture, DK). Emissions into air, groundwater and surface water from pesticide 

application were modeled with PestLCI 2.0 (Dijkman et al., 2012). According to Roer et al. 

(2012) machinery production has a non-negligible influence on the LCA results, differently 

from construction of buildings, therefore the first was included and the last excluded. 

Rainwater use is not considered as an input in LCA (Milà i Canals et al., 2008), and since the 

Danish cropping systems are rain-fed, there is no water use in the inventory. As a secondary 

output from harvesting, it was assumed that straw is incorporated in the soil. In the RERAF 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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experiments plants were grown in a standard soil mixture (Pindstrup no. 6). All harvested 

grain was assumed to be dried in a grain dryer where the water content of the grain was 

reduced to 15%, considering the energy requirement reported by Edström et al. (2005).  

 

2.2.3 Emissions from field 

The unit processes “field emissions into air/water” include the emissions due to fertilizer 

application as well as crop residues, which take place throughout the year. The details of the 

emission factors are reported in Table 1. Emissions of N2O from IPCC default factors (IPCC, 

2006) in Denmark approximately correspond to measured emissions (Chirinda et al., 2010), 

except for the fraction of applied organic N fertilizer materials that volatilizes as NH3 and 

NOX, i.e. FracGASM, which according to Denmark's National Emission Inventory report 

(Nielsen et al., 2013) is equal to 0.019 kg of N volatilized/kg N applied.  

2.3 Life Cycle Impact Assessment (LCIA)  

The purpose of the LCIA is to understand the potential environmental impacts of the system, 

given the LCI results. The choice of the LCIA method is scope-dependent, but some 

recommendations have recently been provided by European Commission´s Joint Research 

Center and have therefore been followed (Hauschild et al. 2013). We did not include the 

whole set of impact categories, but instead focused on a selection of impact categories at 

midpoint level relevant for crop production (Korsaeth et al., 2014; Nemecek et al., 2011a, 

2011b; Roer et al., 2012): 

- climate change (CC) expressed in kg CO2 eq., according to IPCC baseline model of 100 

years (Forster et al., 2007); 

- human toxicity, cancer (HT-c) and non-cancer effects (HT-nc), expressed in comparative 

toxic unit for humans (CTUh) based on the USEtox nested multimedia model (Rosenbaum et 

al., 2008); 

- acidification (AC), expressed in terms of kg molc H
+
 eq., based on Posch et al. (2008); 

- freshwater eutrophication (FE) and marine eutrophication (ME), expressed in Peq. and Neq. 

respectively, according to the EUTREND model as implemented in ReCiPe LCIA model 

(Struijs et al., 2013); 

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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- freshwater ecotoxicity (FET), expressed in comparative toxic unit for ecosystems (CTUe) 

based on the USEtox model (Rosenbaum et al., 2008) with updated characterization factors 

for metals (Ba, Be, Cd, Co, Cr (III), Cu (II), Ni, Pb, Zn) as calculated by Dong et al. (2014);  

- land use (LU), measured in kg C/m
2
/a, based on the Soil Organic Matter (SOM) model by 

Milà et al., (2007), which provides a measurement of soil quality; 

- water resource depletion (WD), measuring water use related to local water scarcity in m
3
 

water eq, according to the Swiss Ecoscarcity model (Frischknecht et al., 2008);  

- mineral & fossil resource depletion (MFD), referring to mineral and fossil resource scarcity 

and measured in terms of Sbeq., based on CML 2002 LCIA model (Guinée et al., 2002). 

2.4 Life Cycle Interpretation  

Life cycle interpretation is the final phase of the LCA, in which the results of both LCI and 

LCIA are discussed as a basis for conclusions and recommendations in accordance with the 

goal and scope of the study. It usually includes different techniques to test the robustness of 

the outcome of the study, i.e. contribution, sensitivity and uncertainty analyses. Contribution 

analysis aims at identifying the contribution of the different unit processes to the impact; it 

has been applied considering the unit processes defined in Figure 1 and Table 1. Sensitivity 

analysis aims at testing relevant hypothesis and their influence on the final outcomes. Since 

the amount of fertilizers applied will likely affect the yield (Snyder et al., 2009), we 

performed a sensitivity analysis through a change in the rate of fertilizer application under 

future scenarios (± 10%). Furthermore, we considered the effect of climate change on crop 

quality, performing a further sensitivity analysis with 1 kg CP (Crude Protein content) as 

functional unit, as suggested by Roer et al. (2012).  

2.5 Scenario definition 

A precise description of spring barley cultivation in the future climate is not straightforward 

as many aspects need to be taken into account. As a consequence no univocal definition of 

spring barley production under future changed climate can be performed, and therefore seven 

alternative scenarios are analyzed. These can be grouped in three main sets: scenarios not 

including adaptation measures (S1, S2), scenarios including adaptation measures (S3, S4, S5) 

and scenarios mimicking extreme events (S6, S7), as reported in Table 3. 
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The identification of the main deviations from the current spring barley cultivation is the key 

point, dealing with the prediction of future conditions and consequently includes assumptions. 

We assumed that residue management will remain the same as today, i.e. straw incorporation. 

It is a reasonable assumption, since in the 5-years interval 2008‒2012 the area with straw left 

on the field has continuously increased in Denmark (Statistics Denmark, 2014c), but straw 

could be used also for energy, fodder or bedding. However the assessment of these options is 

outside the scope of the present LCA.  

Concerning herbicides, insecticides, and fungicides application under future conditions for all 

scenarios we assume an increase of 25% of the treatment index (TI) compared to the current 

value, based on the predictions in Juroszek & von Tiedemann (2011). Furthermore, as we 

cannot make any guess about the types of pesticides which will be developed in the future, we 

assume that pesticides comparable to current ones will be applied also under future climate 

conditions. A change in crop protection is one of the most prominent adaptation measures for 

barley, due to the spread of pests and diseases from warmer zones to northern regions, where 

the expected higher precipitation might also result in higher infestation pressure from some 

native diseases, e.g. Fusarium sp. (Olesen et al., 2011).  

Since in the experiments mimicking future climate the amount of fertilizer currently applied 

was used, in the LCI modeling of future scenarios we kept the amount of N fertilizer per ha 

constant, considering the same source of nutrients and composition (see scenarios S1-S7 in 

Table 3). This assumption is valid if manure from pigs and dairy cattle will not change in 

composition of nutrients, despite of possible changes in feed due to climate change or other 

external factors.  

One of the projected effects of climate change is an increase in N leaching due to increased 

precipitation and percolation (Olesen et al., 2011). Based on Jensen & Veihe (2009) we 

considered two situations: first a 24%increase in N leaching, assuming the same management 

as today for all set of cultivars (S1) and for the five best yielding cultivars (S2). However, as 

the potential increase in leaching could result in needs for modification of fertilizer 

application and crop management practices to comply with EU environmental targets (Olesen 

et al., 2011), we considered also a further set of scenarios including adaptation measures, 

where the level of leaching is kept unchanged considering:  

http://dx.doi.org/10.1016/j.agsy.2015.02.007
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(a) early sowing (Olesen et al., 2012) and decrease in crop yield according to RERAF 

experiments under double treatment (S3);  

(b) cultivation of cultivars with better nutrient efficiency/uptake and same crop yield as today 

(S4);   

(c) cultivation of cultivars with better nutrient efficiency/uptake and better crop yield than 

today (S5). 

Based on Olesen et al. (2011) these actions (changes in cultivars and sowing dates) can be 

seen as short term adjustments, with prospect of adaptation through cultivar improvement 

expected to be more important in the case of spring barley. Early sowing affects all other 

agricultural operations. The change of dates of sowing, application of fertilizer, and harvest 

has been considered in accordance to Henriksen et al. (2012), based on experiences from 

current crop management practices for sites in more southern European countries. The timing 

of pesticide application, being an input to PestLCI 2.0 (Dijkman et al., 2012), has been 

changed accordingly, therefore assuming that herbicides, insecticides and fungicides will be 

applied one month earlier. The inclusion of scenarios with improved crop cultivars is based 

on the evidence that cereal breeders in Europe have in the past succeeded in creating crop 

cultivars with higher yield potential in combination with improved stress tolerance (Tester 

and Langridge, 2010). Genetic improvement has been the main reason for the considerable 

yield increases over the last decades (Peltonen-Sainio et al., 2009; Rötter et al., 2011), 

therefore we assume that breeders will be able both to develop cultivars assuring the same 

level of crop yield (S4) and even with better yielding performance (S5). We hypothesize that 

the pace of yield improvement by breeding in the future will be the same as it was in the last 

decades; therefore for scenario S5 we consider an annual yield increase of 1.144% for the 

next 40 years (Peltonen-Sainio et al., 2009). This last scenario can be used as reference for a 

non-yield-limited situation, where yield is not limited by environmental constraints or 

management compared to today. Finally, the scenarios describing the extreme heat-wave 

event (S6-S7) have the same assumptions as for S1 in terms of N leaching, but crop yield is 

adjusted according to the heat-wave experiment in RERAF. 

Based on Dalgaard et al. (2011), from now to 2050 a decrease in mineral fertilizer and manure 

production is expected in Denmark, due to a reduction in conventionally farmed area. Since 
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measures to improve the N use efficiency and effectiveness through better fertilizer 

management and new technology are already available (Snyder et al., 2009), it is likely that 

the amount of N applied in agricultural crop production will be reduced. To test this trend, we 

considered a reduction of 10% in the amount of N fertilizer applied (S8-S10 in Table 4).  

On the other hand, in the northern zone there might be a need to increase the nutrient supply 

and therefore rates of fertilizer in order to match crop requirements (Doltra et al., 2012). We 

considered three further scenarios (S11-S13 in Table 4) based on 10% increase in fertilizer 

application. A difference in the amount of N fertilizer applied has an influence on both the 

amount of N leaching and crop yield. N leaching has been calculated according to Kristensen 

et al. (2008) based on the amount of N applied (S9, S10, S12, S13), and considering an 

increase of 24% (Jensen and Veihe, 2009) for S8 and S11. Crop yield in the scenarios with 

changed N application was extrapolated considering the correlation between N applied and 

crop yield under current climatic conditions (Stoumann et al., 2011), adding the climate 

change deviation, as measured in RERAF, inherently assuming that the climate-component 

will be independent of the amount of N applied. The field emissions into air (NOX, N2O and 

NH3) have been adjusted according to the N amount applied.  

In a further sensitivity analysis a different functional unit (1 kg CP) was chosen, which takes 

into account the quality of the crop. Data on % of CP were available from RERAF, as 

described in Ingvordsen (2014) for all cultivars considered in the study. The average CP 

content was measured equal to 13.4% under ambient conditions, and 14.5% and 14.6% under 

the double-factor treatment for the sets of 13 and best 5 yielding cultivars, respectively.  
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3. Results  

The results of the LCIA for the current scenario and the seven alternative scenarios for future 

barley cultivation under changed climate are presented in Table 5 in absolute numbers and 

with the % deviation from the current scenario. Figure 2 reports the results in relative terms, 

where the scenario with highest value is used as internal normalization reference and given 

100% of the impact with the other scenarios are consequently rescaled. 

3.1 Contribution analysis 

The results of the contribution analysis for current spring barley cultivation are reported in 

Figure 3, where the contribution of the different unit processes to the total score is reported 

per impact category. The contribution of fertilizer application is significant for almost all 

impact categories, except HT-nc, FET and LU. Fertilizer application dominates the impact for 

HT-c, FE, WD, MFD, but due to different reasons. Mineral fertilizer (CAN and SSP) 

production affects: HT-c, due to metal (Cr) emission into water; WD, due to water needed in 

sulfuric acid production for SSP, and MFD, due to metal extraction in manufacturing, while 

the application of the P component of mineral fertilizer and manure is the main responsible 

for the impact on FE. Field emissions into air contribute predominantly to CC, due to N2O 

emissions and CO2 emissions from loss of soil C, and to AC, due to ammonia emissions. 

Field emissions into water are the main contributor to HT-nc and FET, due to Cu and Zn loss 

deriving from manure application; to ME, due to nitrate emissions and to a lesser extent 

application of fertilizer and manure (N component). Finally, the impact on LU is due to the 

occupation of arable land. Since the inventory data have been collected per hectare of 

cultivated area (Table 1) and then converted to the functional unit through the crop yield 

values in Table 2, the contribution analysis represented in Figure 3 is valid for all impact 

categories, whose value is only affected by changes in crop yield, i.e. HT-c, AC, LU, WD, 

and MFD in all future scenarios. For CC, HT-nc and FET small differences (around 1%) have 

been detected. For CC it should be considered that the change of soil C due to the temperature 

increase has not been included in the calculation. Significant changes in the contribution 

analysis among future scenarios and current scenario were found for FE, as detailed in Figure 

4. Meanwhile for ME there is a slight variation for S1, S2, S6, S7, i.e. scenarios with increase 
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in nitrate leaching, where the contribution of “field emissions into water” increases due to the 

increased nitrate emission into the marine environment.  

3.2 Sensitivity analysis 

The results of the sensitivity analysis on the amount of fertilizer applied are reported in Figure 

5 in terms of deviation from the current scenario. Since for S8 and S9 we assumed the same 

decreased crop yield, these two scenarios present the same percentage variation for all impact 

categories except ME, going from 39% for CC to 74% for FE. For ME the increase is +72% 

and +48% for S8 and S9 respectively, due to the increase in nitrate leaching. The same is the 

case for S11 and S12, which present a similar trend for all impact categories, except ME, 

ranging from an increase of +20% for LU to +31% for HT-c. For ME the increase is +46% for 

S11 (+24% nitrate leaching) and +26% for S12 (current nitrate leaching trend). S10 shows a 

decrease for all impact categories (from -0.2% for LU to -10% for CC), while S13 shows a 

lower increase in impacts compared to S11-S12 (from +0.2% for LU to +11% for CC). 

The results of the sensitivity analysis considering 1 kg CP as functional unit are reported in 

Table 6 in absolute terms and including the % deviation from the current scenario. The 

variation between the alternative future scenarios and the current scenario with respect to the 

case with 1 kg DM as functional unit is lower, ranging around +26/+31% for S1 and S3, 

except ME for S1. Compared to the impacts expressed per kg DM, for S2 and S4 there is a 

reduction of the potential environmental impact between future and current situation, 

meanwhile for S5 the deviation is higher per kg CP.   
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4. Discussion 

4.1 Comparison with other studies 

The LCIA results of current spring barley cultivation in Denmark are aligned with the results 

of other LCA studies on barley production in northern countries, at least for the directly 

comparable impact categories, i.e. CC, ME, FE, HT and FET. A direct comparison among the 

results from different LCA studies is not always straightforward, due to the different system 

boundaries definition and assumptions. Dijkman (2013) performed a comparative LCA of 

spring barley under current and future conditions considering spring barley cultivation in 

Denmark with almost similar assumptions. Due to different modelling assumption (e.g. straw 

removal with consequent economic allocation to assign the impact between grain and straw), 

their values for current spring barley production are lower compared to our results, i.e. 44% 

lower value of CO2eq of CC for sandy loam soil. Secondly they didn’t include the loss of soil 

organic C, which in our study accounts for about 20% of the total impact to CC. With regard 

to Norwegian conditions, our CC value is lower, respectively -82% and -49% (Korsaeth et al., 

2014; Roer et al., 2012). This is mainly due to the differences in crop yield considered for 

Norway, i.e. 3750 kg DM/ha (Korsaeth et al., 2014) and 4760 kg DM/ha (Roer et al., 2012), 

and differences in input, i.e. the exclusion of lime application and changes in SOC (soil 

organic carbon) due to soil mineralization. In terms of unit processes contribution, our CC 

results are in accordance with previous studies, which identify field emissions and fertilizer 

application as the main contributors to the impact (Dijkman, 2013; Korsaeth et al., 2014; Roer 

et al., 2012). Concerning FE, our results are respectively 52% and 43% higher than the results 

obtained by Dijkman (2013) and Roer et al. (2012), due to the P-component released during 

cattle manure application, which is not included in these studies. Concerning ME, our results 

deviate +29% from Dijkman (2013) due to the higher level of N applied by the use of cattle 

manure, and -53% from Roer et al. (2012). Since in the last study the impact on ME is 

dominated by ammonia and nitrous oxides emissions as well as N loss, the deviation is 

probably due to the different contribution of these input flows. Regarding the toxicity impact 

categories, our values are several orders of magnitude higher than the values obtained by 

Dijkman (2013), but this is due to the use of different sets of characterization factors (CFs) for 

Usetox. We indeed included both recommended and interim CFs (EC-JRC-IES, 2011), using 
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updated CFs for heavy metals (Dong et al., 2014), meanwhile Dijkman (2013) considered 

only the recommended set. As a consequence our LCIA includes the contribution of Cu and 

Zn emissions deriving from the application of animal slurry.  

4.2 Consequences to the environment of spring barley production under changed climate 

Our results show that Danish spring barley cultivation under changed climatic conditions (700 

ppm [CO2] and +5°C) will likely have adverse effects on environment, since all the impact 

categories included in the study are expected to increase in the future for all scenarios, except 

the ideal one (S5). The factors causing an increase in potential impacts are manifold, but the 

main reason is the decrease in crop yield. The impact categories which are strongest affected 

by the differences in crop yield are CC, HT-c, AC, LU, WD, MFD. They present similar 

trend, with the highest difference from the current situation observed in S6 and S7, which 

simulate the extreme heat-wave event, as reproduced in RERAF. The increase in potential 

environmental impacts of this selection of impact categories was smaller when the decrease in 

crop yield was reduced in S1 representing situation without adaptation measures. If only the 

best 5 cultivars were considered, the increase in potential environmental impact directly 

reflected the decrease in crop yield, except for ME and FE, where the highest deviations from 

current impacts in S1, S6 and S7 were mainly due to an increased leaching of nitrate from the 

field for ME and leachate losses of P and application of mineral fertilizer and manure for FE. 

The importance of fertilizer application for the environmental impacts of future spring barley 

cultivation is confirmed by the sensitivity analysis where the applied amount of N is varied. 

Since the composition of animal slurry was kept constant in terms of nutrient content, its 

contribution to comply with the N requirement of the crop does not change. Therefore, if the 

overall amount of N applied to the field varies, it has to be through adjustments of the amount 

of mineral fertilizer. The two extreme situations reflect conditions, where the amount of 

mineral N fertilizer was respectively decreased (S8-S9-S10) and increased (S11-S12-S13) 

compared with the current situation. For the set of scenarios with decreased spreading of 

mineral N (S8 and S9), there was an increase in the potential impacts due to the 

accompanying decrease in yield relative to the corresponding scenarios with the current level 

of N application, i.e. S1 vs S8, S3 vs S9. This can be compensated for by development of 

cultivars with the same crop yield at decreased N-input (S10). However, like for S5 this last 
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scenario is an ideal one, since genetic improvement in NUE (Nitrogen Use Efficiency) will 

not be able to alone compensate for decreased N availability, but other crop management 

practices are needed to improve N uptake in future which again may affect the outcome of 

LCA (pers. comm. P. Peltonen-Sainio, MTT, FIN). In this case there could be a reduction for 

those impact categories most affected by mineral fertilizer production and application, i.e. 

CC, HT-c, AC, ME, WD, MFD. An increase in the amount of N applied, and therefore a 

further increase of the share of mineral fertilizer applied, determines an increase of the 

impacts, which is lower than the impact increase in the scenario without adaptation (S1). The 

only scenario with a decrease of the potential environmental impacts for CC is S10, which 

considers cultivars with the same crop yield of today. 

The situation is slightly different with 1 kg CP as functional unit, since the CP content was 

measured to be higher in the future climate. In this case we had three scenarios (S2, S4 and 

S5) showing lower impacts in the future compared to today. For S4, the parameters 

considered were the same as today, except the increase in TI. Therefore this option showed a 

potential reduction in the environmental impacts, due to the greater CP content. However, 

from other results obtained from the same set of cultivars (pers. comm. AM Torp, KU-

Science, DK) it appears that the increase in CP is possibly due partly to increase in phytic 

acid. Phytic acid binds the inorganic phosphate (P) so that animals cannot take it up, and 

excess P is therefore excreted in the manure. Unless compensated for by adding external 

phytase to the fodder, the consequence might be an increase in the P content of pig and dairy 

cattle slurry, which influences mainly FE and ME impacts categories. Increased protein 

content represents an adverse effect for malting processes and final beer quality Högy et al. 

(2013), therefore introducing further uncertainty to spring barley cultivation for malting under 

future climate change in Denmark.  

4.3 Recommendations for the definition of adaptation strategies 

The quantification of GHG emissions from agriculture is fundamental to identifying solutions 

that are consistent with the goals of achieving greater resilience in production systems and 

food security (Olander et al., 2013). However, the assessment of the environmental effects 

from crop cultivation under climate changed conditions should not be limited to the effects on 

the global warming impact category, but to a comprehensive set of environmental issues, as 

http://dx.doi.org/10.1016/j.agsy.2015.02.007


 Niero et al. (2015) Agricultural Systems 136, 46–60 
 http://dx.doi.org/10.1016/j.agsy.2015.02.007 

 

21 
 

advocated by the LCA methodology. In our case study for the scenarios with the 5 best 

yielding cultivars (S2) the difference in CC impact is almost negligible compared to current 

scenario, but in terms of ME the difference is consistent (19%). LCA methodology through 

scenario analysis proved to be effective in achieving this more holistic view in impacts for 

crop and livestock systems (Leinonen et al., 2013; Tendall and Gaillard, 2015). Different 

aspects have been included in the scenario definition, i.e. influence of increase of nitrate 

leaching (S1, S2, S6, S7), increase of the treatment index (S4), as well as difference in crop 

yield (S1, S2, S3, S5, S6, S7). These aspects affect different impact categories and their 

influence on the final results indicate, which adaptation strategy should be prioritized to 

control the overall potential environmental impacts of the future spring barley cultivation in 

Denmark: 

 the influence of the expected increase in pesticide treatment index was not significant 

in terms of potential impacts on ecotoxicity;  

 the impact of nitrate leaching from the future spring barley cultivation on ME 

necessitates the implementation of adaptation measure;  

 the main driver for the adverse environmental impact was the expected reduction in 

crop yield. 

Therefore potential adaptation strategies should mainly focus on sustaining high crop yields in 

the future climatic conditions. As pointed out by Peltonen-Sainio et al. (2009), Rötter et al. 

(2011) and Martín et al. (2014), there are two major contributors to yield trends: changes in 

crop management practices (e.g. shifts in sowing dates) and genetic improvements of cultivars 

to improve their capacity to cope with the changing climatic constraints and environment, 

even for temperature increases exceeding 4°C. With the current germplasm a considerable 

decrease in potential environmental impacts can be obtained, if the best yielding cultivars are 

considered, see S2 vs S1 and S7 vs S6. In the identification of adaptation solutions, we took 

into account only one of the possible changes in crop management, i.e. early sowing (S3). 

This scenario showed the same potential environmental impacts of S1, since both considered 

the same crop yield, and the change in the timing of pesticide application did not influence the 

results. The level of impact in a changed climate could potentially be the same as today, if 

cultivars that are better able to cope with the climatic constraints are developed and thereby, 
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they have at least the same grain yields as today (S4). Furthermore, the great potential of 

selecting genotypes is proved by the likely reduction in environmental impacts in the ideal 

scenario where barley cultivars have better nutrient uptake and higher grain yields than today 

(S5); reductions are even from 40% to 56% according to the selected impact category. This 

example, though sounding partly unrealistic, highlights the importance of putting sufficient 

efforts in research that sustains breeding of resilient cultivars that are particularly well adapted 

to the future conditions of a particular region. This is necessary in order to counter the 

negative effects of climate change on cereal growing in temperate climates, see e.g. Brisson et 

al. (2010) for wheat in France, caused by heat stress during grain filling and drought during 

stem elongation. 

4.4 Limitations and perspectives  

LCA results are strongly affected by the modelling assumptions and the inherent uncertainty 

connected with the definition of future scenarios. Some of the limitations of our study are that 

certain aspects of the cultivation are not dealt with due to ignorance about what will be the 

best future practices, e.g. crop residue management, the effect of crop rotation, changes in soil 

incorporation methods, changes in timing of present and novel management practices as well 

as the indirect effect of climate change on feed composition, quality of manure and irrigation 

needs. Water resource constraints shape the potential for irrigation as an adaptation measure 

to climate change, calling for the development of irrigation infrastructures. This option has 

already been discussed under Finnish (Peltonen-Sainio et al., 2015) and Swiss (Tendall and 

Gaillard, 2015) conditions, but should be considered at policy level also for Danish spring 

barley cultivation. Further efforts should be put in comparing different uses of straw, e.g. for 

energy, fodder or bedding, as well as the effects of slurry management options (ten Hoeve et 

al., 2014) and integrated pest management (Juroszek and von Tiedemann, 2011), the 

beneficial effects of precision farming (Srinivasan, 2006) as well as the influence of climate 

change on soil organic C (Heikkinen et al., 2013). The temperature increase is expected to 

influence soil carbon degradation, as predicted with e.g. a 5% reduction of C sequestration for 

soybean in case of a 2°C temperature increase (Petersen et al., 2013). The increase of organic 

matter mineralization could affect impact categories, such as CC and LU (Hörtenhuber et al., 

2014; Petersen et al., 2013). Furthermore, we assumed that the proportion between yield in 
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the ambient and the future climate scenarios in RERAF will also apply to the present versus 

future field conditions, but this may not be the case. 

This LCA was performed considering Danish conditions, e.g. for fertilizer rates, soil types, 

fertilizer types, but the LCA results obtained may be used as a proxy to represent the situation 

for areas with same or similar crop management and environmental conditions, e.g. according 

to the classification of environmental zones by Trnka et al. (2011). The modeling of mineral 

fertilizer was performed assuming single nutrient fertilizer application, therefore excluding 

the application of K. K contribution to eutrophication is currently not taken into account in the 

ILCD recommended LCIA (Struijs et al., 2013), since the increase in algal growth in 

freshwater or marine systems accompanying the enrichment in nutrients is considered to be 

limited by N or P and K hence not considered relevant as contributor to this impact category. 

Regarding the calculation of P leaching we followed the approach by Nielsen and Wenzel 

(2007), also adopted by Hamelin et al. (2012), which calculates the surplus application as the 

difference between average P from manure application and average plant uptake of P. Other 

approaches can be used for estimating P losses in LCA, see the Supporting Information 

(Appendix 6) in Hamelin et al. (2012) for a detailed list, as well as Smil (2000)  and Maguire 

and Sims (2002) for a detailed description of P fluxes in agriculture and P leaching 

calculation, respectively. 

Data availability represents a constraint in cereal LCA (Renzulli et al., 2015), where specific 

environmental input are needed, e.g. on soil type, and rainfall index. However, the use of 

specific conditions and assumptions valid at local level is not always an option, but proved to 

be significant for diesel fuel consumption from field operations; see e.g. Bacenetti et al. 

(2015) with regard to different technical solutions for seedbed preparation.  
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5. Conclusions 

In this study an LCA including primary data from experiments mimicking future worst case 

climate scenarios (700 ppm [CO2] and +5ºC) was performed. Results showed that these 

changed climatic conditions will likely increase the negative impacts on the environment from 

Danish spring barley cultivation. All environmental impact categories experienced indeed 

increased impact for all investigated scenarios, except under the very optimistic assumption 

that the pace of yield improvement by breeding will be the same as it was in the last decades. 

The main driver of the increased environmental impact was identified as the reduction in crop 

yield. Therefore, potential adaptation strategies should mainly focus on maintaining or 

improving crop productivity.  

Our LCA results proved that the selection of proper cultivars is one effective way of reducing 

the environmental impacts of spring barley in the future, both with unchanged and varied 

fertilizer application rate. Furthermore, our results pointed out the consequence of the extreme 

weather events, since the gain in terms of crop yield obtained from breeding of the best 

yielding cultivars can be annulled by the effect of extreme events such as a long heat wave. 

The negative effect of extreme events on the increase of potential environmental impacts 

emphasizes the need to put more efforts in the development of cultivars with high yield and 

stability and resilience over a range of different environments. 

Crop productivity is only one of the relevant aspects in the assessment of the performance of 

agricultural systems; crop quality is potentially just as important due to its implications for the 

product quality and diet. If yield measurements are based on relative crude protein content, 

considered as an indication of crop quality, the negative effects of the future climate seem to 

be reduced, and some scenarios showed lower impacts in the future compared to today. The 

reason is that crude protein, contrary to yield, is increased because the protein content of the 

cultivars tends to increase under the changed climate conditions. However, crude protein is 

common denomination for numerous proteins, which may or may not be beneficial in 

increased amounts, depending on the use of spring barley.  
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Highlights: 

 

Climate change effects on spring barley cultivation in Denmark quantified by LCA 

Simultaneously elevated CO2 and T ± heat wave: influence on crop yield and quality 

We used primary data from experiments mimicking future climate scenarios 

Main driver of increased impacts is the change in crop yield 

Potential adaptation strategies should aim at breeding for more resilient cultivars 
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Figure captions 

 

Figure 1 - Spring barley product system boundaries with indication of the main input and 

output and the sequence of the field work processes. Dashed lines represent the four main 

steps of the field work related processes, named with capital letters. The production of NPK 

fertilizer, seed, herbicide, fungicide and insecticide is also included. 
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Figure 2 LCIA results for the eight scenarios (baseline and S1-S7) in the form of 

characterized impact profiles showing the scores in relative terms for the impact categories 

included in the study, i.e. climate change (CC), human toxicity due to carcinogens (HT-c) and 

non carcinogens (HT-nc), acidification (AC), freshwater eutrophication (FE), marine 

eutrophication (ME), freshwater ecotoxicity (FET), land use (LU), water depletion (WD), 

mineral & fossil depletion (MFD).  
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Figure 3 Contribution analysis of the unit processes for current spring barley production in 

Denmark (baseline scenario) for the impact categories included in the study, i.e. climate 

change (CC), human toxicity due to carcinogens (HT-c) and non carcinogens (HT-nc), 

acidification (AC), freshwater eutrophication (FE), marine eutrophication (ME), freshwater 

ecotoxicity (FET), land use (LU), water depletion (WD), mineral & fossil depletion (MFD).  
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Figure 4 Contribution analysis of the unit processes for the alternative future scenarios with 

regard to the impact category freshwater eutrophication (FE).   
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Figure 5 Deviations in % from the impacts of the current spring barley production for the 

additional alternative future scenarios considering a decrease of N fertilizer application (S8, 

S9, S10) and an increase of N fertilizer application (S11, S12, S13) for the impact categories 

included in the study, i.e. climate change (CC), human toxicity due to carcinogens (HT-c) and 

non carcinogens (HT-nc), acidification (AC), freshwater eutrophication (FE), marine 

eutrophication (ME), freshwater ecotoxicity (FET), land use (LU), water depletion (WD), 

mineral & fossil depletion (MFD).  
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Table 1 Life cycle inventory flows for the unit processes included in the LCI modelling 

referred to 1 ha, including sources and main adjustments considered in the study. Names in 

italics refer to the ecoinvent process used. 

Unit 

process 

Inventory flow Value Unit Source of data and main adjustments   

Barley 

cultivation 
Arable land occupation  1.49E-4 ha 

Given by the inverse of average crop yield for spring 

barley in loamy sand soil in the 5-years interval from 

2009-2013 with 85% DM content 

Ploughing 

Ploughing – operations on 

the field 
1 ha 

Tillage, ploughing/CH U adapted with Danish diesel 

consumption (19.32 kg/ha) and emissions into air from 

diesel  

Lubrication oil 1.20E-2 kg/ha 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Harrowing 

Harrowing by rotary harrow 1 ha Tillage, harrowing, by rotary harrow/CH U 

Seedbed harrowing  

1 ha 

Tillage, harrowing, by rotary harrow/CH U adapted 

with Danish diesel consumption (5.04 kg/ha) and 

emissions into air from diesel 

Stubble harrowing 

1 ha 

Mulching/CH U adapted with Danish diesel 

consumption (5.88 kg/ha) and emissions into air from 

diesel, based on Hamelin et al. (2012) 

Lubrication oil 

9.10E-2 kg 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Fertilizer 

application 

Fertilizing by broadcasting  1 ha 

Fertilising, by broadcaster/CH U adapted with Danish 

diesel consumption (1.68 kg/ha) and emissions into air 

from diesel 

Slurry spreading  23.74 m
3
 

Slurry spreading, by vacuum tanker/CH adapted with 

Danish electricity mix in diesel production and based on 

application of 25 ton manure/ha 

Lubrication oil 1.37E-2 kg 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Mineral fertilizer – N 

component  
130 kg 

Calcium ammonium nitrate, as N, at regional 

storehouse/RER U adjusted with 0.0062 kg N2O/kg 

nitric acid based on (Hamelin et al., 2012)   

Mineral fertilizer – P 

component 
81.4 kg 

Single superphosphate, as P2O5, at regional 

storehouse/RER U 

Manure, applied – N 

component 
78 kg 

Given by the sum of N content in pig slurry (34,06 kg 

N/kg) and dairy cattle slurry (43,91 kg N/kg) 

Manure, applied – P 

component 
15.7 kg 

Given by the sum of P content in pig slurry (8,34 kg 

P/kg) and dairy cattle slurry (7,34 kg P/kg) 

Fertilizer applied – N 

component 
35 kg 

Given by the difference between the required N supply 

(113 kg N/ha) and N content from slurry 

Fertilizer, applied – P 

component 
6.32 kg 

Given by the difference between the required P supply 

(22 kg P/ha) and P content from slurry 

Sowing & 

harrowing 

Sowing 1 ha 
Sowing/CH U adapted with Danish diesel consumption 

(2.52 kg/ha) and emissions into air from diesel 

Lubrication oil 4.60E-2 kg 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Barley seed  116 kg 

Barley seed IP, at regional storehouse/CH U  

Sowing rate (kg/ha) = 1000 grain weight (44 g)
a
 x 

desired plants /m
2
 (250)

b
 ÷ germination percentage 

(95%)
c 
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Pesticide 

application 

Application of plant 

protection products 
1 ha 

Application of plant protection products, by field 

sprayer/CH U adapted with Danish diesel consumption 

(1.26 kg/ha) and emissions into air from diesel  

Lubrication oil 1.93E-3 kg 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Production of tribenuron-

methyl 
7.50E-3 kg 

Triazine-compounds, at regional storehouse/RER U 

active ingredient (a.i.)= 500 g/kg tribenuron-methyl 

Tribenuron-methyl into air 6.93E-5 kg Calculated through Pest LCI 2.0
 d
 (Dijkman et al., 2012) 

Tribenuron-methyl into 

water 
1.86E-04 kg Calculated through Pest LCI 2.0

 d
 (Dijkman et al., 2012) 

Production of 

pyraclostrobin
e
 - against rust 

(Puccinia hordei) 

6.25E-2 kg 
Pyretroid-compounds, at regional storehouse/RER 

f 

 
0.25 l/ha density: 250 g/l 

Pyraclostrobin
e
 into air   2.39E-4 kg Calculated through Pest LCI 2.0

g
 (Dijkman et al., 2012) 

Pyraclostrobin
e
 into river 1.46E-7 kg Calculated through Pest LCI 2.0

 g
 (Dijkman et al., 2012) 

Pyraclostrobin
e
 into 

groundwater 
7.97E-6 kg Calculated through Pest LCI 2.0

 g
 (Dijkman et al., 2012) 

Production of tebuconazole 

- against scald 

(Rhynchosporium secalis) 

6.25E-2 kg 
Cyclic N-compounds, at regional storehouse/RER U 

0.25 l/ha density: 250 g/l 

Tebuconazole into air 1.79E-5  Calculated through Pest LCI 2.0
 h
 (Dijkman et al., 2012) 

Tebuconazole into 

groundwater 
2.20E-9 kg Calculated through Pest LCI 2.0

 h
 (Dijkman et al., 2012) 

Tebuconazole into surface 

water  
1.23E-6 kg Calculated through Pest LCI 2.0

 h
 (Dijkman et al., 2012) 

Production of pirimicarb - 

against aphidis 
6.25E-2 kg 

[thio]carbamate-compounds, at regional 

storehouse/RER U - 1 dose is 0.25 kg/ha; a.i.= 500 g/kg 

Pirimicarb into air 5.77E-5 kg Calculated through Pest LCI 2.0
 h 

(Dijkman et al., 2012) 

Pirimicarb into groundwater 1.89E-8 kg Calculated through Pest LCI 2.0
 h
 (Dijkman et al., 2012) 

Pirimicarb into surface 

water  
1.50E-5 kg Calculated through Pest LCI 2.0

 h
 (Dijkman et al., 2012) 

Harvesting 

Combined harvesting 1 ha 

Combine harvesting/CH U adapted with Danish diesel 

consumption (10.58 kg/ha) and emissions into air from 

diesel 

Lubrication oil 6.60E-2 ha 

Lubricating oil, at plant/RER U adapted with Danish 

energy mix and diesel consumption and emissions into 

air from diesel 

Drying & 

storage 

Water evaporated during 

drying 
175.12 kg 

Grain drying, high temperature/CH U adapted with 

Danish energy mix; device fed with light fuel oil  

Field 

emission – 

air  

NOX 1.77 kg 

EF from fertilizer application: 0.011 kg NO-N/kg N 

applied (Hamelin et al., 2012) 

EF from crop residue :0.007 kg NO-N/kg N (Hamelin et 

al., 2012) 

N2O 3.50 kg 

Calculated according to IPCC (2006): 

EF1 for mineral fertilizer, organic fertilizer (manure) and 

crop residue input: 0.01 kg N2O-N/kg N  

EF4: 0.01 kg N2O-N/kg NH3-N + NOx-N volatilized 

FracGASF: 0.10 kg NH3-N + NOx-N/kg N 

EF5: 0.0075 kg N2O-N/kg leached and runoff  

NH3 7.34 kg 

EF from mineral fertilizers application: 0.020 kg NH3-

N/kg N applied for CAN (Hamelin et al., 2012) 

EF from pig slurry application: 0.004 kg NH3-N/kg N 

applied (Hamelin et al., 2012) 

EF from cattle slurry application: 0.003 NH3-N/kg N 

applied (Hamelin et al., 2012) 

CO2 792 kg 

Calculated based on Hamelin et al. (2012) from soil 

carbon balance under same assumptions (soil type and 

fertilizer management), considering a loss of soil carbon 

equal to 216 kg C/ ha•y
i
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Field 

emission – 

water 

NO3
-
 126 kg 

Calculated using N-LES4 model (Kristensen et al., 

2008) 

P, total 3.73E-1 kg 
Calculated as 5% of the net surplus application (Nielsen 

& Wenzel, 2007) 

Cu 2.87E-1 kg 
Calculated considering that 100% of Cu surplus is lost 

(Hamelin et al. 2012)  

Zn 6.63E-1 kg 
Calculated considering that 100% of Zn surplus is lost 

(Hamelin et al. 2012) 

1
 based on https://www.landbrugsinfo.dk/planteavl/afgroeder/korn/vaarbyg/sider/pl_pn_10_041.aspx  

b
 based on Bertholdsson & Kolodinska Brantestam (2009) 

c
 assumption 

d 
crop type: cereals (leaf development); application month: April 

e 
used as a proxy of picoxystrobin 

f 
based on the assumption by Hamelin et al. (2012) – supplementary information Table S5 Appendix 2 

g 
crop type: cereals (tillering); application month: May 

h 
crop type: cereals (booting/senescence); application month: June 

i 
which is released to the atmosphere as CO2 
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Table 2 Crop yield data in terms of average and standard deviation of the spring barley 

cultivars included in the experimental scenarios in RERAF climate phytotron 

Type of cultivars 

Crop yield 

Ambient Double treatment  

(↑T & ↑CO2) 

Double treatment 

& heat-wave   

13 cultivars 

(Alf – Alliot – Anakin –Anita –Arve – Brage – 

Brio - Drost Pajbjerg – Edvin – Evergreen – 

Mari – Prestige – Sebastian)  

103.86 ± 15.54 

hkg/ha  

76.67 ± 24.18 

hkg/ha  

48.00 ± 11.73 

hkg/ha 

5 best crop yielding cultivars  
(Alliot – Brage – Brio – Prestige – Sebastian)  

104.81 ± 7.73 

hkg/ha  

102.56 ± 11.20 

hkg/ha  

60.15 ± 11.62 

hkg/ha 
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Table 3 Summary of the alternative scenarios applied for future spring barley cultivation, 

their main features, modelling assumptions and the relative difference from the current crop 

yield. The third column reports in brackets the % difference from the value for the current 

baseline scenario, meanwhile the fourth column reports in brackets the standard deviation. 

Scenario Main features 

Nitrate 

leaching 

[NO3
-
/ha] 

Crop yield 

[kg/ha] 

% crop yield 

difference 

S1 No adaptation – All cultivars 
157 

(+24%) 

4207 

(±13.3) 
-26.2%

a
 

S2 No adaptation – Best 5 yielding cultivars 
157 

(+24%) 

5580 

(±6.1) 
-2.1%

a
 

S3 Adaptation – Early sowing  
126 

(0%) 

4207 

(±13.3) 
-26.2%

a
 

S4 
Adaptation – Improved cultivars with same 

crop yield as today 

126 

(0%) 

5700 

(±0.6)
b
 

0% 

S5 
Adaptation – Improved cultivars with better 

crop yield than today 

126 

(0%) 

9612 

(9120-10830) 
+68.6% 

S6 Extreme event – all cultivars 
157 

(+24%) 

3791 

(±11.7) 
-33.5%

c
 

S7  Extreme event – best 5 yielding cultivars 
157 

(+24%) 

4070 

(±11.6) 
-28.6%

c
 

a 
% difference between ambient and double treatment, as reported in Table 2 

b 
calculated from 5-yrs interval based on (Danish Ministries of Food Agriculture and Fisheries, 2009 - 2013) 

c
 % difference between double treatment without and with and heat-wave; since data refer to a different 

experiments, double treatment data used as reference were slightly different from those reported in Table 2 
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Table 4 Summary of the scenarios considered in the sensitivity analysis on N fertilizer 

applied, their main features, modelling assumptions and the relative difference with the 

current crop yield.  

Scenario Main features 

N fertilizer 

applied 

[kg N/ha] 

Nitrate 

leaching 

[NO3
-
/ha] 

% crop yield 

difference from 

current 

S8 
No adaptation - all cultivars  

–10% N fertilizer 
102 152 -35.6% 

S9 
Adaptation – early sowing  

–10% N fertilizer 
102 122 -35.6% 

S10 

Adaptation – improved cultivars with same 

crop yield as today  

–10% N fertilizer 

102 122 0 

S11 
No adaptation - all cultivars  

+10% N fertilizer 
125 161 -16.8% 

S12 
Adaptation – early sowing  

+10% N fertilizer 
125 130 -16.8% 

S13 

Adaptation – improved cultivars with same 

crop yield as today  

+10% N fertilizer 

125 130 0 
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Table 5 Life Cycle Impact Assessment results calculated for the current spring barley 

production (baseline) and seven alternative future scenarios (S1-S7) in absolute terms and 

including the deviation from current sprig barley production, referred to 1 kg DM spring 

barley grain as functional unit. 

 

Impact 

category 
Units Baseline S1 S2 S3 S4 S5 S6 S7 

Climate change 

(CC) 

kg CO2 

eq 
5.32E-01 7.19E-01 5.43E-01 7.19E-01 5.32E-01 3.68E-01 7.97E-01 7.43E-01 

%  35% 2% 35% 0% -31% 50% 40% 

Human 

toxicity, cancer 

effects (HTc) 

CTUh 1.17E-08 1.58E-08 1.19E-08 1.58E-08 1.17E-08 8.00E-09 1.75E-08 1.63E-08 

%  36% 2% 36% 0% -31% 50% 40% 

Human 

toxicity, non-

cancer effects 

(HT-nc) 

CTUh 2.14E-07 3.00E-07 2.19E-07 3.00E-07 2.14E-07 1.38E-07 3.36E-07 3.11E-07 

%  40% 2% 40% 0% -36% 57% 45% 

Acidification 

(AC) 

molc H+ 

eq 
5.69E-03 7.71E-03 5.81E-03 7.71E-03 5.69E-03 3.90E-03 8.56E-03 7.97E-03 

%  36% 2% 36% 0% -31% 50% 40% 

Freshwater 

eutrophication 

(FE) 

kg P eq 2.91E-04 4.32E-04 2.99E-04 4.32E-04 2.91E-04 1.66E-04 4.92E-04 4.51E-04 

%  49% 3% 49% 0% -43% 69% 55% 

Marine 

eutrophication 

(ME) 

kg N eq 6.45E-03 1.01E-02 7.65E-03 8.73E-03 6.45E-03 4.42E-03 1.13E-02 1.05E-02 

%  57% 19% 35% 0% -31% 75% 63% 

Freshwater 

ecotoxicity 

(FET) 

CTUe 40.81 56.53 41.77 56.53 40.81 26.92 63.11 58.55 

% - 39% 2% 39% 0% -34% 55% 43% 

Land use (LU) 

kg C 

deficit 
17.51 23.72 17.89 23.72 17.51 12.01 26.33 24.52 

%  35% 2% 35% 0% -31% 50% 40% 

Water resource 

depletion (WD) 

m3 

water eq 
2.74E-04 3.72E-04 2.80E-04 3.72E-04 2.74E-04 1.88E-04 4.12E-04 3.84E-04 

%  36% 2% 36% 0% -31% 50% 40% 

Mineral, fossil 

& ren resource 

depletion 

(MFD) 

kg Sb eq 3.09E-06 4.19E-06 3.16E-06 4.19E-06 3.09E-06 2.12E-06 4.65E-06 4.33E-06 

%  36% 2% 36% 0% -31% 50% 40% 
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Table 6 Life Cycle Impact Assessment results calculated for the current spring barley 

production (baseline) and alternative future scenarios (S1-S5) in absolute terms and including 

the deviation from current sprig barley production, referred to 1 kg CP as functional unit. 

 

 

Impact category Unit Baseline S1 S2 S3 S4 S5 

Climate change 

(CC) 

kg CO2 eq 3.96 4.97 3.73 4.97 3.68 2.54 

% - 26% -6% 26% -7% -36% 

Human toxicity, 

cancer effects 

(HTc) 

CTUh 8.68E-08 1.09E-07 8.18E-08 1.09E-07 8.06E-08 5.53E-08 

% - 26% -6% 26% -7% -36% 

Human toxicity, 

non-cancer 

effects (HT-nc) 

CTUh 1.59E-06 2.07E-06 1.5E-06 2.07E-06 1.48E-06 9.52E-07 

% - 30% -5% 30% -7% -40% 

Acidification 

(AC) 

molc H+ eq 4.23E-02 5.33E-02 3.99E-02 5.33E-02 3.93E-02 2.70E-02 

% - 26% -6% 26% -7% -36% 

Freshwater 

eutrophication 

(FE) 

kg P eq 2.16E-03 2.99E-03 2.06E-03 2.99E-03 2.01E-03 1.14E-03 

% - 38% -5% 38% -7% -47% 

Marine 

eutrophication 

(ME) 

kg N eq 4.80E-02 7.01E-02 5.26E-02 6.04E-02 4.45E-02 3.06E-02 

% - 46% 10% 26% -7% -36% 

Freshwater 

ecotoxicity (FET) 

CTUe 303.67 390.64 286.85 390.64 282.05 186.00 

% - 29% -6% 29% -7% -39% 

Land use (LU) 
kg C deficit 130.28 163.95 122.84 163.95 121.01 83.02 

% - 26% -6% 26% -7% -36% 

Water resource 

depletion (WD) 

m3 water eq 2.04E-03 2.57E-03 1.92E-03 2.57E-03 1.90E-03 1.30E-03 

 - 26% -6% 26% -7% -36% 

Mineral, fossil & 

ren resource 

depletion (MFD) 

kg Sb eq 2.30E-05 2.89E-05 2.17E-05 2.89E-05 2.14E-05 1.47E-05 

% - 26% -6% 26% -7% -36% 
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