268 research outputs found

    Modeling the Effects of Radiation on Microelectromechanical Resonators

    Get PDF
    As the use of MEMS becomes more prolific in air, space, defense, and power applications, they will be exposed to more extreme radiation environments. This dissertation explores the effects of ionizing and nonionizing radiation on MEMS. AlN-on-Si based piezoelectric bulk acoustic wave resonators were irradiated by gamma-rays and silicon ions while measuring S-parameters in situ. Changes to the resonator and equivalent circuit parameters are extracted. The resonators demonstrated resilience against the effects of radiation-induced charge trapping. However, radiation-induced atomic displacements caused shifts to resonant frequency. From these data, an atomistic model is derived to describe the relationship between radiation type and its effects on MEMS material parameters, including effective elastic modulus and piezoelectric coefficient. Radiation-induced atomic displacement damage decreases the effective elastic modulus of the resonator material by as much as 130 ppm in space radiation environments to as much as 6200 ppm in a heavy ion irradiation environment

    Calculation of compressible turbulent boundary layers with pressure gradients and heat transfer

    Get PDF
    Calculation of compressible turbulent boundary layers with pressure gradients and heat transfe

    Daylighting: appraisal at the early design stages

    Get PDF
    For a building design team concerned with the quality of the internal environment of buildings the percentage area of glazing on a building facade is one of the most useful criteria for judging the building envelope as a modifier of climate at early design stages since it is at the window that the various environmental parameters (heat, light and sound) remain only minimally modified. The percentage area of glazing can be used to relate the numerous and often conflicting functions of the window such as the provision of daylight, summer time teperatures, sound insulation, energy efficiency and view satisfaction

    Recent Decisions

    Get PDF
    Comments on recent decisions by Richard D. Schiller, J. M. Lynes, Harry Contos, R. L. Cousineau, and Norris James Bishton

    A statistical method to optimize the chemical etching process of zinc oxide thin films

    Get PDF
    Zinc oxide (ZnO) is an attractive material for microscale and nanoscale devices. Its desirable semiconductor, piezoelectric and optical properties make it useful in applications ranging from microphones to missile warning systems to biometric sensors. This work introduces a demonstration of blending statistics and chemical etching of thin films to identify the dominant factors and interaction between factors, and develop statistically enhanced models on etch rate and selectivity of c-axis-oriented nanocrystalline ZnO thin films. Over other mineral acids, ammonium chloride (NH4Cl) solutions have commonly been used to wet etch microscale ZnO devices because of their controllable etch rate and near-linear behaviour. Etchant concentration and temperature were found to have a significant effect on etch rate. Moreover, this is the first demonstration that has identified multi-factor interactions between temperature and concentration, and between temperature and agitation. A linear model was developed relating etch rate and its variance against these significant factors and multi-factor interactions. An average selectivity of 73 : 1 was measured with none of the experimental factors having a significant effect on the selectivity. This statistical study captures the significant variance observed by other researchers. Furthermore, it enables statistically enhanced microfabrication processes for other materials

    Isolation of Progenitors that Exhibit Myogenic/Osteogenic Bipotency In Vitro by Fluorescence-Activated Cell Sorting from Human Fetal Muscle

    Get PDF
    Summary Fluorescence-activated cell sorting (FACS) strategies to purify distinct cell types from the pool of fetal human myofiber-associated (hMFA) cells were developed. We demonstrate that cells expressing the satellite cell marker PAX7 are highly enriched within the subset of CD45−CD11b−GlyA−CD31−CD34−CD56intITGA7hi hMFA cells. These CD45−CD11b−GlyA−CD31−CD34−CD56intITGA7hi cells lack adipogenic capacity but exhibit robust, bipotent myogenic and osteogenic activity in vitro and engraft myofibers when transplanted into mouse muscle. In contrast, CD45−CD11b−GlyA−CD31−CD34+ fetal hMFA cells represent stromal constituents of muscle that do not express PAX7, lack myogenic function, and exhibit adipogenic and osteogenic capacity in vitro. Adult muscle likewise contains PAX7+ CD45−CD11b−GlyA−CD31−CD34−CD56intITGA7hi hMFA cells with in vitro myogenic and osteogenic activity, although these cells are present at lower frequency in comparison to their fetal counterparts. The ability to directly isolate functionally distinct progenitor cells from human muscle will enable novel insights into muscle lineage specification and homeostasis

    Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis

    Get PDF
    Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional response through endoplasmic reticulum stress-mediated retrograde communication. Cardiolipin depletion in brown and beige fat abolishes adipose thermogenesis and glucose uptake, which renders animals insulin resistant. We further identify a rare human CRLS1 variant associated with insulin resistance and show that adipose CRLS1 levels positively correlate with insulin sensitivity. Thus, adipose cardiolipin has a powerful impact on organismal energy homeostasis through thermogenic fat bioenergetics

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
    • …
    corecore