3,044 research outputs found

    Hairy Leukoplakia

    Get PDF
    Oral hairy leukoplakia (OHL) is a disease of the mucosa first described in 1984. This pathology is associated with Epstein-Barr virus (EBV) and occurs mostly in people with HIV infection, both immunocompromised and immunocompetent, and can affect patients who are HIV negative. [1, 2] The first case in an HIV-negative patient was reported in 1999 in a 56-year-old patient with acute lymphocytic leukemia. Later, many cases were reported in heart, kidney, and bone marrow transplant recipients and patients with hematological malignancies. [3, 4

    Underwater acoustics research at the Woods Hole Oceanographic Institution, 1930-1960

    Get PDF
    Author Posting. © Acoustical Society of America, 2016. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Proceedings of Meetings on Acoustics 23 (2016): 070013, doi:10.1121/2.0000214.The Woods Hole Oceanographic Institution (WHOI) was founded in 1930, and throughout its history has had a strong involvement in research into the science and applications of sound in the ocean. In terms of a brief history, three eras stand out: (1) pre-WWII, (2) WWII, and (3) the postwar years. This manuscript will focus on the history of the most influential and colorful, individuals and stories that arose during the war years. Provided are personal reminiscences, technical report details, and photos illustrating the achievements, and importance, in underwater sound research at WHOI during that time.This work was supported by ONR Grant N00014-14-1-0040/N00014-16-1-2361

    Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water

    Get PDF
    Author Posting. © IEEE, 2010. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 35 (2010): 12-27, doi:10.1109/JOE.2009.2038512.Nonlinear internal waves in shallow water have been shown to be effective ducts of acoustic energy, through theory, numerical modeling, and experiment. To date, most work on such ducting has concentrated on rectilinear internal wave ducts or those with very slight curvature. In this paper, we examine the acoustic effects of significant curvature of these internal waves. (By significant curvature, we mean lateral deviation of the internal wave duct by more than half the spacing between internal waves over an acoustic path, giving a transition from ducting to antiducting.) We develop basic analytical models of these effects, employ fully 3-D numerical models of sound propagation and scattering, and examine simultaneous acoustical and oceanographic data from the 2006 Shallow Water Experiment (SW06). It will be seen that the effects of curvature should be evident in the mode amplitudes and arrival angles, and that observations are consistent with curvature, though with some possible ambiguity with other scattering mechanisms.This work was supported by E. Livingston and T. Pawluskiewicz of the U.S. Office of Naval Research (ONR) under Grant N00014–04-1–0146 and the ONR postdoctoral fellowship award Grant N00014-08-1-0204

    The Structure At 198 K Of (1R,5R,15R,16R)-5-Isopropenyl-2-Methyl-1(N-(Trans-2-Phenylcyclohexyloxyc Arbonyl)Amino)-2-Cyclohexene

    Get PDF
    trans-2-Phenylcyclohexyl N-(5-isopropenyl-2-methyl-2-cyclohexan-1-yl)carbamate, C23H31NO2, M(r) = 353.50, orthorhombic, P2(1)2(1)2(1), a = 8.813 (2), b = 9.043 (2), c = 25.643 (5) angstrom, V = 2043.6 (8) angstrom 3, Z = 4, D(x) = 1.15 g cm-3 (198 K), Mo K-alpha radiation, lambda = 0.7107 angstrom, mu = 0.6734 cm-1, F(000) = 768, T = 198 K, R = 0.0547 for 1772 reflections [F(o) greater-than-or-equal-to 4-sigma-(F(o))]. Molecules are H-bonded into infinite columns parallel to a. The H bond involves the NH group and the carbonyl O atom of the carbamate moiety with relevant parameters: N11-H11...O13 (related by 1/2 + x, 1/2 - y, - z); N...O 2.910 (5), H...O 2.11 (5) angstrom, N-H...O 159 (4)-degrees.Robert A. Welch Foundation (F-626)National Institutes of Health (GM 31750)ChemistryBiochemistr

    Winter 1993 observations of oceanography and sediment transport at the LEO-15 site

    Get PDF
    The NOAA National Underseas Research Program at Rutgers University is establishing a Long-term Ecosystem Observatory off New Jersey in 15 meters of water. As part of a bottom boundary layer study at this site, WHOI deployed a bottom instrument frame during the winter of 1993-94. The bottom instrument carried a current meter, a vertical array of optical back scattering sensors, temperature, pressure and conductivity sensors and an Acoustical Backscattering Sensor. The deployment was partially successful as the acoustic system failed. The other instrumentation worked well for 3 weeks returning data on winter conditions at the site. The extreme winter waves ended the experiment by tipping the instrument over on its side. The optical instrumentation was calibrated with sediment from the site, and the results from the experiment presented.Funding was provided by the National Oceanic and Atmospheric Administration through Contract No. 4-25020 to Rutgers/SUNY National Underseas Research Program

    Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation

    Full text link
    Current coronal mass ejection (CME) models set their lower boundary to be in the lower corona. They do not calculate accurately the transfer of free magnetic energy from the convection zone to the magnetically dominated corona because they model the effects of flux emergence using kinematic boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling by simulating, in 2.5D, the emergence of sub-surface flux tubes into different coronal magnetic field configurations. We investigate how much free magnetic energy, in the form of shear magnetic field, is transported from the convection zone to the corona, and whether dynamical flux emergence can drive CMEs. We find that multiple coronal flux ropes can be formed during flux emergence, and although they carry some shear field into the corona, the majority of shear field is confined to the lower atmosphere. Less than 10% of the magnetic energy in the corona is in the shear field, and this, combined with the fact that the coronal flux ropes bring up significant dense material, means that they do not erupt. Our results have significant implications for all CME models which rely on the transfer of free magnetic energy from the lower atmosphere into the corona but which do not explicitly model this transfer. Such studies of flux emergence and CMEs are timely, as we have new capabilities to observe this with Hinode and SDO, and therefore to test the models against observations

    High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 74 (2017): 240-255, doi:10.1139/cjfas-2015-0301.A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.AUV missions were funded by an Office of Naval Research grant to the Woods Hole Oceanographic Institution and Rutgers University. The field work was supported by the Office of Naval Research under grant N00014-11-1-0160

    Impacts of ocean warming on acoustic propagation over continental shelf and slope regions

    Get PDF
    Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31(2), (2018):174–181, doi:10.5670/oceanog.2018.219.Gradients of heat and salt affect the propagation of sound energy in the ocean. Anticipated changes in oceanic conditions will alter thermohaline conditions globally, thus altering sound propagation. In this context, we examine changes in shallow- water propagation. Because these waters are close to the surface, they will be the earliest to change as the atmospheric state and radiative conditions change. We compare current and possible future propagation patterns near fronts and across fronts on continental shelves. Changes in sound pathways between the deep ocean and coastal regions are also examined, including an example from the Arctic Ocean.GG was supported by the Office of Naval Research under grants N00014-16-1-3071 and N00014-16-1-2774

    Three-dimensional coupled mode analysis of internal-wave acoustic ducts

    Get PDF
    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.United States. Office of Naval Research (Grant N00014-11-1-0195)United States. Office of Naval Research (Grant N00014-11-1-0701

    FOR REAL: Forming Resilience and Employability through Authentic Learning, 2015 action research report

    Get PDF
    How 'real world' learning aids student learning, resilience and employabilit
    • …
    corecore