23,966 research outputs found

    Space shuttle OMS helium regulator design and development

    Get PDF
    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included

    Hedge funds, credit risk transfer and financial stability.

    Get PDF
    Over the past decade, central bankers and financial institution supervisors have sharpened their focus on the increasingly important role that private pools of investment funds play in global financial markets. The growth in these pools has contributed significantly to market efficiency and financial stability by expanding liquidity in many financial markets, improving price discovery, and, ultimately, lowering the costs of capital. Private investment pools and the alternative investment strategies they pursue have contributed to a signifi cant expansion of the global markets and have helped accelerate the evolution in traded credit products such as credit derivatives, collateralized debt obligations, and the securitization of an increasing array of traditionally illiquid assets. However, because of the lack of transparency and an established regime of supervision of these investment vehicles, policymakers and supervisors have become concerned about customer protection and the potential for systemic risk. This paper discusses some of the key issues confronting supervisors in light of the recent growth of private investment pools and the rapid developments in the area of credit risk transfer, with a particular focus on the implications of these trends regarding systemic risk and financial stability.

    Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Full text link
    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. (2006) proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets. We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare current sheet. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions.Comment: Accepted for publication in The Astrophysical Journal (2016

    The moderating influences on the relationship of corporate reputation with its antecedents and consequences: a meta-analytic review

    Get PDF
    Through a meta-analytical approach, we test the antecedents and consequences of corporate reputation, examining specifically the moderating roles of three study variables: country of study, stakeholder group, and reputational measure. The study presents a comprehensive overviewof threemoderating factors for the relationship of corporate reputation with its antecedents and consequences in the literature from 101 quantitative studies. Our findings suggest that practitioners need to exercise considerable caution when developing and managing the reputation of their organizations through the use of research evidence from various countries, with different stakeholder groups and when employing diverse reputational measures

    The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    Get PDF
    We describe the design of a correlator system for ground and space-based VLBI. The correlator contains unique signal processing functions: flexible LO frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate digital signal-processing techniques to allow correlation of signals at different sample rates; and a digital filter for very high resolution cross-power spectra. It also includes autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation.Comment: 44 pages, 13 figure

    The Helicopter Antenna Radiation Prediction Code (HARP)

    Get PDF
    The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results

    The collective quantization of three-flavored Skyrmions revisited

    Full text link
    A self-consistent large NcN_c approach is developed for the collective quantization of SU(3) flavor hedgehog solitons, such as the Skyrmion. The key to this analysis is the determination of all of the zero modes associated with small fluctuations around the hedgehog. These are used in the conventional way to construct collective coordinates. This approach differs from previous work in that it does not implicitly assume that each static zero mode is associated with a dynamical zero mode. It is demonstrated explicitly in the context of the Skyrmion that there are fewer dynamical zero modes than static ones due to the Witten-Wess-Zumino term in the action. Group-theoretic methods are employed to identify the physical states resulting from canonical quantization of the collectively rotating soliton. The collective states fall into representations of SU(3) flavor labeled by (p,q)(p,q) and are given by (2J,Nc2−J)(2J, \frac{Nc}{2} -J) where J=1/2,3/2,...J={1/2},{3/2},... is the spin of the collective state. States with strangeness S>0S > 0 do not arise as collective states from this procedure; thus the θ+\theta^{+} (pentaquark) resonance does not arise as a collective excitation in models of this type.Comment: 12 pages; uses package "youngtab
    • …
    corecore