1,743 research outputs found

    Self-pulsation dynamics in narrow stripe semiconductor lasers

    Get PDF
    In this paper, we address the physical origin of self-pulsation in narrow stripe edge emitting semiconductor lasers. We present both experimental time-averaged polarization-resolved near-field measurements performed with a charged-coupled device camera and picosecond time resolved near-field measurements performed with a streak camera. These results demonstrate dynamic spatial-hole burning during pulse formation and evolution. We conclude from these experimental results that the dominant process which drives the self-pulsation in this type of laser diode is carrier induced effective refractive index change induced by the spatial-hole burning

    Second Harmonic Generation in ZnO Nanowires

    Get PDF
    Second harmonic generation (SHG) is one of the most researched nonlinear material properties and finds applications in many fields ranging from laser projection to cancer detection to future optical switches for molecular devices. Studying SHG in ZnO nanostructures started few years ago and there is a long way to go to compete with the existing nonlinear crystals. Information gathered over the past few years in research on SHG of ZnO nanowires (NWs) is summarized in this chapter. Recent advancement in the growth techniques for various types of ZnO NWs used for SHG studies is also discussed. We present an extensive analysis and discussion on some key parameters that directly modify the efficiency of SHG in ZnO NWs. The key parameters considered for discussion are aspect ratio of NWs, doping, and external strain. At the end, current standing on the reported values of nonlinear coefficients and future outlook are presented

    Formation of the high-affinity agonist state of the α1-adrenergic receptor at cold temperatures does not require a G-protein

    Get PDF
    AbstractTwo methods were employed to uncouple hepatic α1-adrenergic receptors from their associated G-protein (termed Gp) in order to determine wether locking of the α1-receptor in a high-affinity agonist state at cold temperatures (2°C) represents formation of a ternary complex. Uncoupling is defined as the inability to observe the GppNHp-sensitive, high-affinity agonist state of the receptor in [3H]prazosin competition binding studies performed at 25°C. The first method for achieving uncoupling involved brief alkalinization and resulted in greater 95% loss of several G-proteins. The second method involved proteolytic cleavage of either part or all of the α1-receptor coupling domain from the binding domain. Following either treatment, receptors were converted to the high-affinity agonist state at 2°C. Thus, while formation of the high-affinity state of the receptor at higher temperatures may require Gp, formation of this state at 2°C does not require Gp or even the entire α1-adregenic receptor

    Separation of natural from laboratory-grown diamond using time-gated luminescence imaging

    Get PDF
    A technique that expands on the surface luminescence imaging used in the DiamondView instrument has been developed at De Beers Group Technology, Maidenhead, UK. This provides an additional level of imaging information by way of separating prompt and delayed surface luminescence. The technique has the added benefit of quickly and easily distinguishing colorless or near-colorless natural diamond from laboratory-grown diamond. It can be applied when the identification of natural diamond is required in the study of single stones, multiples in batches, set jewelry, or in a fully automated process. The prompt and delayed luminescence characteristics of natural diamond are compared with a range of chemical vapor deposition (CVD) and high-pressure, high-temperature (HPHT) synthetic diamonds. Of significant interest are some of the less common CVD synthetic samples that have been observed in recent years. This article will summarize the luminescence observed in different diamond types, discuss its spectral characteristics, and serve as a useful reference when interpreting such luminescence images

    Optical response from terahertz to visible light of electronuclear transitions in LiYF4:Ho3+

    Get PDF
    Because of its role as a model system with tunable quantum fluctuations and quenched disorder, and the desire for optical control and readout of its states, we have used high-resolution optical absorption spectroscopy to measure the crystal-field excitations for Ho3+ ions in LiHoxY1−xF4 from the terahertz to visible regimes. We show that many of the excitations yield very narrow lines visibly split even by the nuclear hyperfine interaction, making Ho3+ in LiHoxY1−xF4 a candidate host for optically addressable electronuclear qubits with quality factors as high as Q = 4.7 × 105, where the higher-lying levels are electronic singlets. Optical transitions in the easily accessible near- and mid-infrared are narrow enough to allow readout of the ground-state electronuclear qubits responsible for the interesting magnetism of LiHoxY1−xF4. While many of the higher-lying states have been observed previously, we also report here detailed spectra of terahertz excitations. The strengths of the electric and magnetic dipole crystal-field transition lines of five of the lowest excited spin-orbit manifolds of dilute LiYF4:Ho3+ were calculated and compared with measurement. The magnitude of the nuclear hyperfine coupling was used to assign the correct upper and lower states to transition lines

    Occurrence of OsHV-1 in Crassostrea gigas cultured in Ireland during an exceptionally warm summer. Selection of less susceptible oysters

    Get PDF
    The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. NaĂŻve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naĂŻve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 ÎŒVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 ÎŒVar by intramuscular injection and were compared to naĂŻve animals. The survival rate in previously exposed animals was significantly higher than in naĂŻve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance

    Bullseye dielectric cavities for photon collection from a surface-mounted quantum-light-emitter

    Get PDF
    Coupling light from a point source to a propagating mode is an important problem in nano-photonics and is essential for many applications in quantum optics. Circular "bullseye" cavities, consisting of concentric rings of alternating refractive index, are a promising technology that can achieve near-unity coupling into a first lens. Here we design a bullseye structure suitable for enhancing the emission from dye molecules, 2D materials and nano-diamonds positioned on the surface of these cavities. A periodic design of cavity, meeting the Bragg scattering condition, achieves a Purcell factor of 22.5 and collection efficiency of 80 %. We also tackle the more challenging task of designing a cavity for coupling to a low numerical aperture fibre in the near field. Using an iterative procedure, we show that apodized (non-periodic) rings can achieve a collection efficiency that exceeds the periodic Bragg cavity.Comment: 9 pages, 6 figure

    Estimating the horizontal and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea

    Get PDF
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3282, doi:10.1121/1.4818843.Conventional and adaptive plane-wave beamforming with simultaneous recordings by large-aperture horizontal and vertical line arrays during the 2009 Philippine Sea Engineering Test (PhilSea09) reveal the rate of occurrence and the two-dimensional arrival structure of seismic phases that couple into the deep ocean. A ship-deployed, controlled acoustic source was used to evaluate performance of the horizontal array for a range of beamformer adaptiveness levels. Ninety T-phases from unique azimuths were recorded between Yeardays 107 to 119. T-phase azimuth and S-minus-P-phase time-of-arrival range estimates were validated using United States Geological Survey seismic monitoring network data. Analysis of phases from a seismic event that occurred on Yearday 112 near the east coast of Taiwan approximately 450 km from the arrays revealed a 22° clockwise evolution of T-phase azimuth over 90 s. Two hypotheses to explain such evolution—body wave excitation of multiple sources or in-water scattering—are presented based on T-phase origin sites at the intersection of azimuthal great circle paths and ridge/coastal bathymetry. Propagation timing between the source, scattering region, and array position suggests the mechanism behind the evolution involved scattering of the T-phase from the Ryukyu Ridge and a T-phase formation/scattering location estimation error of approximately 3.2 km.This research is supported by the Office of Naval Research, both the Applied Research Laboratory program and Code 322(OA)

    Inter‐ and intra‐software reproducibility of computed tomography lung density measurements

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156221/2/mp14130.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156221/1/mp14130_am.pd

    Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide

    Get PDF
    Microwave–optical conversion is key to future networks of quantum devices, such as those based on superconducting technology. Conversion at the single quantum level requires strong nonlinearity, high bandwidth, and compatibility with a millikelvin environment. A large nonlinearity is observed in Rydberg atoms, but combining atomic gases with dilution refrigerators is technically challenging. Here, we demonstrate a strong microwave–optical nonlinearity in a cryogenic, solid-state system by exploiting Rydberg states of excitons in Cu2O. We measure a microwave–optical cross-Kerr coefficient of B0 = 0.022 ± 0.008 m V−2 at 4 K, which is several orders of magnitude larger than other solid-state systems. The results are in quantitative agreement with a nonlinear susceptibility model based on the giant microwave dipole moment between nearby excitonic states. Our results highlight the potential of Rydberg excitons for nonlinear optics and form the basis for a microwave–optical frequency converter based on Cu2O
    • 

    corecore