105 research outputs found

    Incorporating Climate Change Refugia Into Climate Adaptation in the Acadia National Park Region

    Get PDF
    Climate change is predicted to have significant impacts on New England’s biodiversity. If emissions continue unabated, mean global temperature is predicted to rise by 3-5 ºC by the end of the century, and well beyond the range of natural variability. Changes are already evident in Acadia National Park (ACAD). Between 1895 and 2010, annual precipitation significantly increased in ACAD by 16% and temperatures by 0.8 ºC; the rate of temperature increase in the park is expected to be 3-6 times greater by 2100, particularly in inland portions. Identifying climate change refugia for representative species can provide valuable information for adapting to climate change. Climate change refugia are areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. Many of the physical characteristics and microclimatic gradients that can create climate change refugia – such as high spatial heterogeneity in topography and habitat, proximity to large water bodies, and regular inland diffusion of coastal fog – are present in ACAD

    Incorporating climate change into invasive species management: insights from managers

    Get PDF
    Invasive alien species are likely to interact with climate change, thus necessitating management that proactively addresses both global changes. However, invasive species managers’ concerns about the effects of climate change, the degree to which they incorporate climate change into their management, and what stops them from doing so remain unknown. Therefore, we surveyed natural resource managers addressing invasive species across the U.S. about their priorities, concerns, and management strategies in a changing climate. Of the 211 managers we surveyed, most were very concerned about the influence of climate change on invasive species management, but their organizations were significantly less so. Managers reported that lack of funding and personnel limited their ability to effectively manage invasive species, while lack of information limited their consideration of climate change in decision-making. Additionally, managers prioritized research that identifies range-shifting invasive species and native communities resilient to invasions and climate change. Managers also reported that this information would be most effectively communicated through conversations, research summaries, and meetings/symposia. Despite the need for more information, 65% of managers incorporate climate change into their invasive species management through strategic planning, preventative management, changing treatment and control, and increasing education and outreach. These results show the potential for incorporating climate change into management, but also highlight a clear and pressing need for more targeted research, accessible science communication, and two-way dialogue between researchers and managers focused on invasive species and climate change

    Forecasting species distributions : correlation does not equal causation

    Get PDF
    This research was funded by the U.S. Department of the Interior Northeast Climate Adaptation Science Center, which is managed by the U.S. Geological Survey National Climate Adaptation Science Center. Additional funding was provided by T-2- 3R grants for Nongame Species Monitoring and Management through the New Hampshire Fish and Game Department and E-1- 25 grants for Investigations and Population Recovery through the Vermont Fish and Wildlife Department.Aim Identifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects. Location New Hampshire and Vermont, USA. Methods Using causal and correlational models and new theory on range limits, we compared current (2014?2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high-emission scenario (RCP8.5) of projected snow and forest biomass change. Results Our hypothesis that causal models of climate-mediated competition would result in different distribution predictions than correlational models, both in the current and future periods, was well-supported by our results; however, these patterns were prominent only for species pairs that exhibited strong interactions. The causal model predicted the current distribution of Canada lynx (Lynx canadensis) more accurately, likely because it incorporated the influence of competitive interactions mediated by snow with the closely related bobcat (Lynx rufus). Both modeling frameworks predicted an overall decline in lynx occurrence in the central high-elevation regions and increased occurrence in the northeastern region in the 2080s due to changes in land use that provided optimal habitat. However, these losses and gains were less substantial in the causal model due to the inclusion of an indirect buffering effect of snow on lynx. Main conclusions Our comparative analysis indicates that a causal framework, steeped in ecological theory, can be used to generate spatially explicit predictions of species distributions. This approach can be used to disentangle correlated predictors that have previously hampered understanding of range limits and species' response to climate change.Publisher PDFPeer reviewe

    A Great Escape : resource availability and density-dependence shape population dynamics along trailing range edges

    Get PDF
    This research was funded by the Northeast Climate Adaptation Science Center, which is managed by the USGS National Climate Adaptation Science Center. Additional funding was provided by 1) a CFDA grant (15.678) administered by the USFWS via a Cooperative Agreement Award (no. F16AC00435) to the University of Massachusetts (UMass); 2) a Challenge Cost Share Agreement (no. 14-CS-11092200-019) between the USFS and NHFG; 3) a Dissertation Fieldwork Grant awarded to APKS by the UMass Graduate School, 4) generous support from backers of an Experiment award to APKS and MZ (DOI: 10.18258/10737) and 5) a National Science Foundation grant DEB-1907022 to LSM.Populations along geographical range limits are often exposed to unsuitable climate and low resource availability relative to core populations. As such, there has been a renewed focus on understanding the factors that determine range limits to better predict how species will respond to global change. Using recent theory on range limits and classical understanding of density dependence, we evaluated the influence of resource availability on the snowshoe hare Lepus americanus along its trailing range edge. We estimated variation in population density, habitat use, survival, and parasite loads to test the Great Escape Hypothesis (GEH), i.e. that density dependence determines, in part, a species' persistence along trailing edges. We found that variability in resource availability affected density and population fluctuations and led to trade-offs in survival for snowshoe hare populations in the northeastern USA. Hares living in resource-limited environments had lower and less variable population density, yet higher survival and lower parasitism compared to populations living in resource-rich environments. We suggest that density-dependent dynamics, elicited by resource availability, provide hares a unique survival advantage and partly explain persistence along their trailing edge. We hypothesize that this low-density escape from predation and parasitism occurs for other prey species along trailing edges, but the extent to which it occurs is likely conditional on the quality of matrix habitat. Our work indicates that biotic factors play an important role in shaping species' trailing edges and more detailed examination of non-climatic factors is warranted to better inform conservation and management decisions.Publisher PDFPeer reviewe

    Erosion of refugia in the Sierra Nevada meadowsnetwork with climate change

    Get PDF
    Climate refugia management has been proposed as a climate adaptation strategy in the face of global change. Key to this strategy is identification of these areas as well as an understanding of how they are connected on the landscape. Focusing on meadows of the Sierra Nevada in California, we examined multiple factors affecting connectivity using circuit theory, and determined how patches have been and are expected to be affected by climate change. Connectivity surfaces varied depending upon the underlying hypothesis, although meadow area and elevation were important features for higher connectivity. Climate refugia that would promote population persistence were identified from downscaled climate layers, based on locations with minimal climatic change from historical conditions. This approach was agnostic to specific species, yielding a broad perspective about changes and localized habitats. Connectivity was not a consistent predictor of refugial status in the 20th century, but expected future climate refugia tended to have higher connectivity than those that recently deviated from historical conditions. Climate change is projected to reduce the number of refugial meadows on a variety of climate axes, resulting in a sparser network of potential refugia across elevations. Our approach provides a straightforward method that can be used as a tool to prioritize places for climate adaptation.This work was primarily supported by a grant from the California Landscape Conservation Cooperative (80250-BJ127) to TLM, CM, and SRB, along with funding from the U.C. Berkeley Initiative in Global Change Biology to SRB and an NSF Bioinformatics Postdoctoral Research Fellowship to TLM. We thank Eric Berlow, Bob Westfall, Connie Millar, Sarah Stock, and David Wright for analytical input. We thank J.Z. Drexler and at least two anonymous reviewers for comments that improved earlier drafts

    Developing a translational ecology workforce

    Get PDF
    We define a translational ecologist as a professional ecologist with diverse disciplinary expertise and skill sets, as well as a suitable personal disposition, who engages across social, professional, and disciplinary boundaries to partner with decision makers to achieve practical environmental solutions. Becoming a translational ecologist requires specific attention to obtaining critical non-scientific disciplinary breadth and skills that are not typically gained through graduate-level education. Here, we outline a need for individuals with broad training in interdisciplinary skills, use our personal experiences as a basis for assessing the types of interdisciplinary skills that would benefit potential translational ecologists, and present steps that interested ecologists may take toward becoming translational. Skills relevant to translational ecologists may be garnered through personal experiences, informal training, short courses, fellowships, and graduate programs, among others. We argue that a translational ecology workforce is needed to bridge the gap between science and natural resource decisions. Furthermore, we argue that this task is a cooperative responsibility of individuals interested in pursuing these careers, educational institutions interested in training scientists for professional roles outside of academia, and employers seeking to hire skilled workers who can foster stakeholder-engaged decision making
    • …
    corecore