21 research outputs found

    Contribution of Vegetation to the Microbial Composition of Nearby Outdoor Air.

    Get PDF
    UnlabelledGiven that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate.ImportanceThis paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute to atmospheric microbial assemblages, but much of what we know is limited to qualitative assessments. Elucidating the sources of microbes in outdoor air can inform basic biological processes seen in airborne communities (e.g., dispersal and biogeographical patterns). Furthermore, given the considerable contribution of outdoor air to microbial communities found within indoor environments, the understanding of plants as sources of airborne microbes in outdoor air might contribute to our understanding of indoor air quality. With an experimental design developed to minimize the likelihood of other-than-local plant sources contributing to the composition of airborne microbes, we provide direct evidence that plants are quantitatively important local sources of airborne microorganisms, with implications for the surrounding ecosystems

    Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality

    Get PDF
    Predation on bacteria and accompanying mortality are important mechanisms in controlling bacterial populations and recycling of nutrients through the microbial loop. The agents most investigated and seen as responsible for bacterial mortality are viruses and protists. However, a body of evidence suggests that predatory bacteria such as the Halobacteriovorax (formerly Bacteriovorax), a Bdellovibrio-like organism, contribute substantially to bacterial death. Until now, conclusive evidence has been lacking. The goal of this study was to better understand the contributors to bacterial mortality by addressing the poorly understood role of Halobacteriovorax and how their role compares with that of viruses. The results revealed that when a concentrated suspension of Vibrio parahaemolyticus was added into microcosms of estuarine waters, the native Halobacteriovorax were the predators that responded first and most rapidly. Their numbers increased by four orders of magnitude, whereas V. parahaemolyticus prey numbers decreased by three orders of magnitude. In contrast, the extant virus population showed little increase and produced little change in the prey density. An independent experiment with stable isotope probing confirmed that Halobacteriovorax were the predators primarily responsible for the mortality of the V. parahaemolyticus. The results show that Halobacteriovorax have the potential to be significant contributors to bacterial mortality, and in such cases, predation by Halobacteriovorax may be an important mechanism of nutrient recycling. These conclusions add another dimension to bacterial mortality and the recycling of nutrients

    Cyanobacterial Toxin Degrading Bacteria: Who Are They?

    No full text
    Cyanobacteria are ubiquitous in nature and are both beneficial and detrimental to humans. Benefits include being food supplements and producing bioactive compounds, like antimicrobial and anticancer substances, while their detrimental effects are evident by toxin production, causing major ecological problems at the ecosystem level. To date, there are several ways to degrade or transform these toxins by chemical methods, while the biodegradation of these compounds is understudied. In this paper, we present a meta-analysis of the currently available 16S rRNA and mlrA (microcystinase) genes diversity of isolates known to degrade cyanobacterial toxins. The available data revealed that these bacteria belong primarily to the Proteobacteria, with several strains from the sphingomonads, and one from each of the Methylobacillus and Paucibacter genera. Other strains belonged to the genera Arthrobacter, Bacillus, and Lactobacillus. By combining the ecological knowledge on the distribution, abundance, and ecophysiology of the bacteria that cooccur with toxic cyanobacterial blooms and newly developed molecular approaches, it is possible not only to discover more strains with cyanobacterial toxin degradation abilities, but also to reveal the genes associated with the degradation of these toxins

    Bacterial Diversity in Ships’ Ballast Water, Ballast-Water Exchange, and Implications for Ship-Mediated Dispersal of Microorganisms

    No full text
    Using next-generation DNA sequencing of the 16S rRNA gene, we analyzed the composition and diversity of bacterial assemblages in ballast water from tanks of 17 commercial ships arriving to Hampton Roads, Virginia (USA) following voyages in the North Atlantic Ocean. Amplicon sequencing analysis showed the heterogeneous assemblages were (1) dominated by Alpha- and Gammaproteobacteria, Bacteroidetes, and unclassified Bacteria; (2) temporally distinct (June vs August/September); and (3) highly fidelitous among replicate samples. Whether tanks were exchanged at sea or not, their bacterial assemblages differed from those of local, coastal water. Compositional data suggested at-sea exchange did not fully flush coastal Bacteria from all tanks; there were several instances of a genetic geographic signal. Quantitative PCR yielded no <i>Escherichia coli</i> and few instances of <i>Vibrio</i> species. Salinity, but not ballast-water age or temperature, contributed significantly to bacterial diversity. Whether anthropogenic mixing of marine Bacteria restructures their biogeography remains to be tested

    Variability of Prokaryotic Community Structure in a Drinking Water Reservoir (Marathonas, Greece)

    No full text
    The structure of the Bacteria and Archaea community in a large drinking water reservoir (Marathonas, Greece; MR) was investigated in October 2007 and September 2008, using 16S rRNA gene clone libraries. The bacterial communities were more diverse than archaeal communities (Shannon diversity index H' 0.81-3.28 and 1.36-1.77, respectively). The overall bacterial community composition was comparable to bacterioplankton community described in other freshwater habitats. Within the Bacteria, Betaproteobacteria dominated, while representatives of Alpha-, Gamma- and Deltaproteobacteria also occurred. Other important phyla were Actinobacteria and Bacteroidetes, while representatives of Acidobacteria, Cyanobacteria, Chloroflexi, Planctomycetes and Verrucomicrobia were also retrieved. Several phylotypes in Alpha-and Betaproteobacteria and Bacteroidetes were related to bacteria capable of cyanotoxin degradation and with aromatic compounds/iron oxidizers or polymer degraders. Euryarchaeota dominated (60.5%) the Archaea community mostly with phylotypes related to Methanobacteriales and Methanosarcinales. Among the Thaumarchaeota, the two most abundant phylotypes were affiliated (97% similarity) with the only cultivated mesophilic thaumarchaeote of marine origin, Nitrosopumilus maritimus. Temporal and spatial comparison of the prokaryotic community structure revealed that three of the most abundant prokaryotic phylotypes, belonging to Actinobacteria, were recovered from all sites both years, suggesting that these Actinobacteria could be important key players in MR ecosystem functioning
    corecore