63 research outputs found

    Optimization in Knowledge-Intensive Crowdsourcing

    Full text link
    We present SmartCrowd, a framework for optimizing collaborative knowledge-intensive crowdsourcing. SmartCrowd distinguishes itself by accounting for human factors in the process of assigning tasks to workers. Human factors designate workers' expertise in different skills, their expected minimum wage, and their availability. In SmartCrowd, we formulate task assignment as an optimization problem, and rely on pre-indexing workers and maintaining the indexes adaptively, in such a way that the task assignment process gets optimized both qualitatively, and computation time-wise. We present rigorous theoretical analyses of the optimization problem and propose optimal and approximation algorithms. We finally perform extensive performance and quality experiments using real and synthetic data to demonstrate that adaptive indexing in SmartCrowd is necessary to achieve efficient high quality task assignment.Comment: 12 page

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Semantic Indexing and Retrieval based on Formal Concept Analysis

    Get PDF
    Semantic indexing and retrieval has become an important research area, as the available amount of information on the Web is growing more and more. In this paper, we introduce an original approach to semantic indexing and retrieval based on Formal Concept Analysis. The concept lattice is used as a semantic index and we propose an original algorithm for traversing the lattice and answering user queries. This framework has been used and evaluated on song datasets

    Capturing the City’s Heritage On-the-Go: Design Requirements for Mobile Crowdsourced Cultural Heritage

    Get PDF
    Intangible Cultural Heritage is at a continuous risk of extinction. Where historical artefacts engine the machinery of intercontinental mass-tourism, socio-technical changes are reshaping the anthropomorphic landscapes everywhere on the globe, at an unprecedented rate. There is an increasing urge to tap into the hidden semantics and the anecdotes surrounding people, memories and places. The vast cultural knowledge made of testimony, oral history and traditions constitutes a rich cultural ontology tying together human beings, times, and situations. Altogether, these complex, multidimensional features make the task of data-mapping of intangible cultural heritage a problem of sustainability and preservation. This paper addresses a suggested route for conceiving, designing and appraising a digital framework intended to support the conservation of the intangible experience, from a user and a collective-centred perspective. The framework is designed to help capture the intangible cultural value of all places exhibiting cultural-historical significance, supported by an extensive analysis of the literature. We present a set of design recommendations for designing mobile apps that are intended to converge crowdsourcing to Intangible Cultural Heritage

    How Personality and Communication Patterns Affect Online ad-hoc Teams Under Pressure

    Get PDF
    Critical, time-bounded, and high-stress tasks, like incident response, have often been solved by teams that are cohesive, adaptable, and prepared. Although a fair share of the literature has explored the effect of personality on various other types of teams and tasks, little is known about how it contributes to teamwork when teams of strangers have to cooperate ad-hoc, fast, and efficiently. This study explores the dynamics between 120 crowd participants paired into 60 virtual dyads and their collaboration outcome during the execution of a high-pressure, time-bound task. Results show that the personality trait of Openness to experience may impact team performance with teams with higher minimum levels of Openness more likely to defuse the bomb on time. An analysis of communication patterns suggests that winners made more use of action and response statements. The team role was linked to the individual's preference of certain communication patterns and related to their perception of the collaboration quality. Highly agreeable individuals seemed to cope better with losing, and individuals in teams heterogeneous in Conscientiousness seemed to feel better about collaboration quality. Our results also suggest there may be some impact of gender on performance. As this study was exploratory in nature, follow-on studies are needed to confirm these results. We discuss how these findings can help the development of AI systems to aid the formation and support of crowdsourced remote emergency teams

    Crowdsourcing Team Formation With Worker-Centered Modeling

    Get PDF
    Modern crowdsourcing offers the potential to produce solutions for increasingly complex tasks requiring teamwork and collective labor. However, the vast scale of the crowd makes forming project teams an intractable problem to coordinate manually. To date, most crowdsourcing collaborative platforms rely on algorithms to automate team formation based on worker profiling data and task objectives. As a top-down strategy, algorithmic crowd team formation tends to alienate workers causing poor collaboration, interpersonal clashes, and dissatisfaction. In this paper, we investigate different ways that crowd teams can be formed through three team formation models namely bottom-up, top-down, and hybrid. By simulating an open collaboration scenario such as a hackathon, we observe that the bottom-up model forms the most competitive teams with the highest teamwork quality. Furthermore, we note that bottom-up approaches are particularly suitable for populations with high-risk appetites (most workers being lenient toward exploring new team configurations) and high degrees of homophily (most workers preferring to work with similar teammates). Our study highlights the importance of integrating worker agency in algorithm-mediated team formation systems, especially in collaborative/competitive settings, and bears practical implications for large-scale crowdsourcing platforms
    corecore