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Crowdsourcing Team Formation With
Worker-Centered Modeling
Federica Lucia Vinella*, Jiayuan Hu, Ioanna Lykourentzou and Judith Masthoff

Human Centred-Computing, Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands

Modern crowdsourcing offers the potential to produce solutions for increasingly complex

tasks requiring teamwork and collective labor. However, the vast scale of the crowd

makes forming project teams an intractable problem to coordinate manually. To date,

most crowdsourcing collaborative platforms rely on algorithms to automate team

formation based on worker profiling data and task objectives. As a top-down strategy,

algorithmic crowd team formation tends to alienate workers causing poor collaboration,

interpersonal clashes, and dissatisfaction. In this paper, we investigate different ways

that crowd teams can be formed through three team formation models namely

bottom-up, top-down, and hybrid. By simulating an open collaboration scenario such as

a hackathon, we observe that the bottom-up model forms the most competitive teams

with the highest teamwork quality. Furthermore, we note that bottom-up approaches

are particularly suitable for populations with high-risk appetites (most workers being

lenient toward exploring new team configurations) and high degrees of homophily (most

workers preferring to work with similar teammates). Our study highlights the importance

of integrating worker agency in algorithm-mediated team formation systems, especially

in collaborative/competitive settings, and bears practical implications for large-scale

crowdsourcing platforms.
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1. INTRODUCTION

Online, on-demand, and large-scale work, also called crowd work, is increasingly gaining traction.
For more and more people, this new labor model is no longer used just for side “gigs” but as a
primary source of income. Companies are also shifting toward elastic labor models, increasing their
share of crowd workers in favor of a full-time workforce (LLP, 2020). The pandemic accelerated
this trend, forcing many people to re-skill, up-skill, and to work with unfamiliar and distant
collaborators, especially in the form of crowd work (Barnes et al., 2015; De Stefano, 2015; Manyika
et al., 2016). Besides small, straightforward tasks, also known as micro-tasks (Difallah et al., 2015),
such as image recognition, captcha annotation, and translation, crowds are now increasingly
being involved in generating solutions to difficult or “wicked” problems, such as climate change
mitigation, disease spread prevention, or rapid innovation generation. Tasks of this sort also called
macro-tasks (Khan et al., 2019), tend to be complex and ill-structured, with multiple knowledge
interdependencies and no straightforward solution. Because of their complex and open-ended
character, these tasks typically require collaboration among workers of different skill sets and
knowledge backgrounds. While micro-tasks lend themselves to being solved quickly and are
therefore short-lived and affordable, macro-tasks frequently urge interdisciplinary collaboration,
require more time, and are more challenging due to their breadth of scope.

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.818562
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.818562&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f.l.vinella@uu.nl
https://doi.org/10.3389/frai.2022.818562
https://www.frontiersin.org/articles/10.3389/frai.2022.818562/full


Vinella et al. Worker-Centered Crowd Team Formation

Driven by the need to innovate and stay ahead of competition,
companies increasingly make open calls for solving creative
challenges through platforms such as OpenIdeo (Lakhani
et al., 2012) and InnoCentive (Lakhani and Lonstein, 2008),
where teams of crowd workers compete for prizes (Betts and
Bloom, 2014). Another type of commercial task, which highly
depends on the successful collaboration of crowd teams are
online creative hackathons, for example those dedicated to video
game development. Events such as the Global Game Jam gather
thousands of online participants, including artists, developers,
marketers, who form teams to compete for the best game product;
sustainable game production in this case directly depends on the
participants’ ability to find the right group to work with Whitson
et al. (2021). Aside from pure commercial interest, crowd
team formation is also at the core of governmental initiatives.
With the profound societal changes brought by the COVID-19
pandemic, grassroots entrepreneurship efforts have increased to
stimulate economies and slow down infection rates. With 9,000
participants from 142 countries and 49 states, the Massachusetts
Institute of Technology (MIT) COVID-19 Challenge is the most
recent exemplary attempt addressing immediate needs with rapid
innovation through a series of virtual hackathons involving ad-
hoc teams of remote participants (Ramadi and Nguyen, 2021).

To coordinate the efforts of such workforce, crowdsourcing
research has started to look into team formation algorithms
as automated, scalable solutions. Routinely, team formation
algorithms match workers according to objectives such as
interpersonal compatibility (Lykourentzou et al., 2021) and social
network connectivity (Liu et al., 2015; Rahman et al., 2019).
One of the limits of computed team formation solutions—
which we address in this study—is the omission of the workers’
preferences and evolving relationships in the algorithmic
objective function. In other words, workers have no say in
whether they want to stay in a team chosen for them, and
who they will work with. Team formation algorithms usually
collect the workers’ profile features before the task begins (Liu
et al., 2015; Rahman et al., 2019), but then do not adjust
to the workers’ utilities and pay-offs during the collaboration.
Although the workers’ attributes are gathered only once, they
are often assumed to suffice for the formulation of optimal
teams. As a result, algorithms often fail to capture covert features
such as temporal team dynamics information, collaboration
preferences, intra-group compatibility, and individual risk
appetites; features that play a key role in teamwork success
(Degli Antoni et al., 2021). Aside from profiling information,
team formation systems have recently started to factor social
network properties in their objective functions, bringing together
teams based on their network tie strength (Salehi and Bernstein,
2018) mutating as the collaboration evolves. However, in this
case too, the system does not adapt its decisions based on
worker feedback concerning the enforced rotations, and it
does not account for cases where the workers’ ties deteriorate
or even break. In reality, however, individual team member
agency makes up a significant portion of whether a team
will be able to perform successfully or not, and removing it
could mean reducing the adequacy and fairness of the team
formation system.

Concerns about the poor representation of worker agency
in automated team formation solutions are starting to surface.
Recent research shows that purely top-down solutions result
in rigid team structures and workflows that stifle creativity
and initiative-taking, and inhibit workers from adapting their
problem-solving strategy to the task needs, which, in turn,
is detrimental for complex and open-ended tasks (Retelny
et al., 2017). Forcing workers to work with specific people
can also cause psychological fatigue and discomfort, reduce
user autonomy, alienate workers, and lead to less-than-optimal
collaboration (Rasmussen and Jeppesen, 2006; Lawler and
Worley, 2009). A growing number of studies are starting
to propose ways to incorporate worker agency, including
preferences but also unconscious drivers, into crowd work
settings, so as to directly and positively advance teamwork
quality, efficiency, and well-being. Gaikwad et al. (2015, 2017)
and Whiting et al. (2017) show that incorporating elements
of open governance has been found to promote trust between
workers and task providers. Yin et al. (2018) show that trusting
workers with the work schedule increases the number of tasks
completed without compromising quality, with workers actually
willing to forego significant pay to control their working time.
Specifically to the domain of collaborative work, Lykourentzou
et al. (2016b) use a technique known as team dating, where
people meet with candidate teammates in rapid succession
before deciding to settle into teams. Although their solution
integrates agency only indirectly, by forming teams based on peer
evaluations of the intermediate team dates, this study shows that
accounting for worker feedback during team formation can have
a positive effect on team performance and satisfaction. Looking
at research preceding the online crowdsourcing and open
collaboration movements (Jackson, 1983; De Dreu and West,
2001), we also spot fundamental evidence on the importance of
allowing workers’ agency in teamwork such as through minority
dissent and participation in decisionmaking. Granted autonomy,
individuals not only produce improved results (Gilson and
Shalley, 2004; Costa et al., 2018), but also exhibit healthier mental
states associated with self-governance, feelings of empowerment,
reduced stress, sense of ownership over their work and ideas,
and increased group interdependence and cohesion (Carless
and De Paola, 2000; Rasmussen and Jeppesen, 2006; Haas and
Mortensen, 2016). In this study we are interested in exploring
how more worker-centered and bottom-up team formation
compares to the prevalent approach of forming teams in a
top-down and purely algorithm-driven manner. We do so
by modeling and comparing three team formation systems,
namely a (i) fully bottom-up system, where we model algorithm
involvement to be minimal and team formation to lie almost
exclusively on worker decisions, a (ii) fully top-down one,
where we adapt a latest state-of-the-art team formation algorithm
(Salehi and Bernstein, 2018), (iii) and (iv) a hybrid system,
which borrows elements from the previous two. Although the
three system models all aim to tackle team formation, their
difference lies in the level of agency they permit and the degree
of algorithmic mediation they enforce during team formation.

The fully bottom-up system (which we call SOT from Self-
Organized Teams) is represented by two models. The first model,
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called Radical SOT (R-SOT), prioritizes individual worker over
team preferences of new teammates, and dismantles an existing
team if at least one of its members decides to leave. The
model focuses on facilitating novel interactions between the
workers and leads to radical restructures of the collaboration
network. The second model, called Conservative SOT (C-SOT),
facilitates bottom-up team formation in a less radical manner,
since it prioritizes team over solo worker agency. In this model,
teams looking for members have priority over individuals, and
a team remains together as long as two of its members wish
to keep collaborating. This model prioritizes majority consent
over minority dissent. For the top-down model, we adopt Hive,
a community-based team formation algorithm by Salehi and
Bernstein (2018). Hive was chosen as it is a state-of-the-art
algorithm and it represents the latest trend in top-down team
formation approaches which adapt their decisions during the task
rather than making them only once in the beginning. Briefly,
Hive uses social network information to rotate people across
teams so as to balance tie strength and network efficiency, and
computes teamwork quality whilst rotating teams according to
a stochastic search suited to minimize algorithm complexity.
Finally, combining bottom-up and top-down approaches, we
propose and add to the comparison a third hybrid system model
named HiveHybrid. The model combines worker agency with
algorithmic mediation. In this model, the algorithm offers to
rotate workers according to the Hive system’s objective function,
but workers have then the option to accept or decline these
proposals based on whether they are predisposed to break ties
with their teammates or not (depending on their assessment of
team reward and their personal risk appetite). In HiveHybrid, the
workers’ preferences play as much of a role in team formation as
the coordinating algorithm. We run a comparative study, using
agent-based simulations on the scenario of team formation for a
creative game development hackathon, to evaluate differences in
teamwork quality across these three team formation models. We
focus on answering the following research questions:

1. RQ1. How does bottom-up team formation compare with

top-down and hybrid approaches? We first compare the
three team formation system models on the teamwork quality
they yield, since quality is the primary and typical concern
of crowdsourcing research, platforms, and clients. We use
three metrics, namely the best, average, and worst teamwork
quality, which are relevant depending on the requirements
and constraints of the specific crowd work use case one is
interested in.

2. RQ2: How do population behavioral tendencies affect the

outcome of bottom-up online teamwork? Since bottom-up
systems are more influenced by the participating workers’
attributes, tendencies, preferences, and decisions than top-
down ones, we systematically evaluate the effects of certain
worker population’s attributes on team performance. The
objective of this evaluation is to help future crowdsourcing
systems design incentives or countermeasures for different
expected population behaviors, concerning team exploration
tendencies, population size, and tendencies toward teamwork
diversity. To systematically evaluate the effects of each of

these attributes, we break down this research question into the
following three sub-questions:

• RQ2.1: How do different risk appetites affect teamwork

output in bottom-up models? Workers with a high
risk appetite tend to leave teams and rotate more often
(preference for exploration) compared to workers with a
lower risk appetite who tend to form more lasting teams
(preference for exploitation). Risk appetite is expected
to affect teamwork quality as it affects the number and
structure of the self-organized teams. As a personal
attribute, risk appetite is not only to influence the frequency
of changes but also the preference of tasks (i.e., some
workers might prefer tasks that are higher paid but less
likely to be completed successfully), however, for simplicity,
we have focused on one task type for this study.
• RQ2.2: How do different worker population sizes affect

teamwork output in bottom-up models? Evaluating the
effects of changes in the population size helps to understand
how changes in crowdsourcing collaborative participation
affects the workers’ search space, coordination costs, and
teamwork quality.
• RQ2.3: How does homophily, i.e., the tendency to prefer

working with similar teammates, affect teamwork output

in bottom-upmodels?Homophily is known to affect social
interactions as people tend to choose (work with) partners
based on shared physical and cultural cues (Haun and
Over, 2015). Evaluating the effects of different homophily
thresholds of the participating worker population on
quality can facilitate the evaluation of whether certain
explicit system incentives are needed to encourage workers
to join forces with different collaborators or not.

Our results contribute to the development of future
crowdsourcing tools for team formation that can be adapted—
with the introduction of more or less degrees of agency—to
the needs of the particular use case and the characteristics of
the specific worker population involved. For one, we observe
that self-organization supports the formation of competitive

teams. In use case scenarios where innovation is key, a system
capable of preserving worker agency can be a good return-on-
investment for organizations that leverage competitive skills.
Inspiring exploration across a large pool of curious workers
seems to be an adequate strategy for forming competitive
teams in bottom-up settings; so is the emancipation of team
similarity where workers favor teammates of similar cultural
and demographic attributes when workers have full control
over team rotation. On the contrary, usage scenarios where
it is more important to maintain fairness than performance,
could benefit more from algorithmic-mediated team formation
solutions to explicitly moderate the segregating tendencies
we observe in fully bottom-up models. In this case, our
results indicate that a hybrid system such as HybridHive
constitutes an advantage over either fully top-down or fully
bottom-up models, since it balances the global distribution of
resources with worker agency mediating micro behavior through
macro structures.
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The rest of this paper is organized as follows. We first provide
an overview of existing team formation approaches focusing on
the collaborative crowdsourcing domain (Section 2). Afterward,
we dive deeper into the modeling components that make the
three team formation systems examined in this study (Section
3). Next, we present the results of the simulations comparing
the three systems, mapped to the relevant research questions
(Section 4). We then proceed by discussing the applicability and
relevance of the findings (Section 5), followed by reasoning on the
limitations of this study (Section 6). We conclude the paper with
the main findings, key messages, and final remarks (Section 7).

2. RELATED WORK

2.1. Team Formation Algorithms for
Managing Online Work
Broadly speaking, the Team Formation Problem (TFP) is the
problem of allocating a set of people to subsets, referred to as
teams, according to a set of criteria that vary depending on the
application area (Juárez et al., 2021). As illustrated in Juárez
et al. (2021)’s recent review and taxonomy, TFP research has
been persistently increasing over the past ten years. The problem
encompasses a wide variety of applications, ranging from the
assignment of students to study groups, to the distribution
of patients to hospital rooms, and from the assignment of
reviewers to papers, to the composition of teams for collaborative
work purposes. In this paper, we focus on team formation for
online work and, in particular, large-scale crowd participation in
collaborative work. The research community has mostly focused
on designing algorithms that ensure the quality of digital work
by orchestrating people in a top-down manner, mainly with
the objective to optimize costs. A recent extensive bibliometric
analysis of 268 articles on crowd work task recommendation
(Yin et al., 2020), covering the period of 2006–2019 (practically
since the onset of crowd work) confirms the above, revealing
that the largest and most durable research clusters focus on
forming teams to optimize the task’s budget, using methods
such as dynamic programming, routing, and allocation. Similar
methods are standard practice in operational research (Taha,
2013), an area traditionally geared toward optimizing supply
chain management and manufacturing.

2.1.1. Static Team Formation Models: Making

Decisions Only Once
The problem of forming optimal teams is generally NP-hard,
and for this reason the majority of team formation algorithms
make their decisions in a deterministic fashion and only once
at the beginning of the task. The algorithm’s intervention in
these cases ends with one-off team formation decisions, after
which the teams remain stationary, indisputable, and irreversible.
Commonly used team formation systems typically bank on
pre-existing workers profiling data, such as skills, availability,
or hourly wage to estimate teamwork dimensions including
expertise complementary (Rahman et al., 2019), team costs (Liu
et al., 2015), and team roles (Retelny et al., 2014; Valentine et al.,
2017). Subsequently, the algorithms feed this data to machine
learning or combinatorial optimization models to produce

(near-)optimal solutions. An example of such an approach is the
work by Rahman et al. (2019) proposing an algorithm that relies
on worker skills, wage, and pairwise affinity to match workers
with teams and teams with tasks. Other examples include the
work by Yu et al. (2019) using the Hungarian algorithm to
calculate matches based on skill, task complexity, and active time,
and the work by Ahmed et al. (2020) exploring crowdsourcing
sequential arrival with the objective to maximize teams’ utility
and diversity.

Besides handling team formation as a combinatorial
optimization problem, there are other ways that crowdsourcing
team formation problems have been thought of. An example is
the work by Liu et al. (2015) operating through a mechanism
design approach that proposes a task pricing algorithm seeking
to assemble crowd teams on the basis of costs and skills. This
work looks at worker truthfulness in the bidding process as a
desirable property of the model, where incentive compatibility
results in the preferred dominant strategy. Models of this kind
rely on pre-calculated assumptions and deterministic predictions
to make their team formation decisions and are especially
useful in settings where task requirements are well-defined and
known a priori, and worker characteristics are immutable. For
these tasks, the use of pre-calculated teams permits to scale-up
and compute solutions that are both computationally efficient
and high-quality (Avis, 1983). However, static models do not
appraise changes in the collaborative environment, for example,
changes in the workers’ preferences and affinities as they work
together, the evolution of team dynamics, or changes in the
task requirements (e.g., expertise needed) over the course of the
collaboration (Ananny, 2016; Faraj et al., 2018). Consequentially,
they risk creating rigid team structures that cannot optimally
address tasks of evolving complexity.

2.1.2. Dynamic Team Formation Models: Adapting to

Change
Recently, research has started looking into adaptive algorithms
that make their team formation decisions during the task,
as the collaboration unfolds. In this direction, Zhou et al.
(2018) propose an algorithm using multi-armed bandits with
temporal constraints, which explores the trade-offs among
various dimensions of team structure, such as interaction
patterns or hierarchies. By letting each bandit observe team
performance and choose which arm to use next, the algorithm
decides when and how to make changes in the structure of each
team. In another example, Retelny et al. (2014) and Valentine
et al. (2017) propose Foundry, a crowd management system that
assembles workers into role-based teams. Although workers can
request changes in the original teams, the final decision is made
by a small number of experts and the task requester. Aside from
skill sets, budget, and time, a small set of recent studies has
started proposing team formation algorithms that harness social
network qualities such as connectivity (Salehi and Bernstein,
2018), centrality (Hasteer et al., 2015), and marginality (Wang,
2020), as non-trivial parameters affecting teamwork performance
across time. In this direction, Jiang et al. (2019) propose a team
formation algorithm that instead of forming artificial teams,
based on the individual teammates’ skills, cost, or other features,
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utilizes groups that have been naturally organized through social
networks, and allocated them to tasks in a priority-based manner
based on their capacity to address the task. In the same line, Wu
et al. (2021) propose a graph-based algorithm that estimates the
accuracy of allocating a group of workers to a task, by joining the
factorized matrixes of the workers’ social network connections
with their work history of on tasks.

Relevant to this study is the work of Salehi and Bernstein
(2018). It envisages an online model (Hive algorithm) that
balances two competing forces in team formation optimization:
network efficiency and tie strength among the different worker
pairs. It conceives crowdsourcing team formation as a graph
partitioning problem where disjoint subsets (teams) benefit
from strong ties but suffer from a lack of connectivity within
the collaborative environment. This approach is an attempt
to reconcile familiarity (obtained when relationships remain
constant over time) and serendipity (spurred when breaking
old ties and forming new ones). It handles team formation
problems sequentially and in a stochastic fashion, juxtaposing
top-down appointed team rotation with a series of collaborative
stages of crowdsourcing work. It mediates team rotation by
picking probabilistic moves at every round in keeping with a
combination of tie strength and network efficiency. Rotating
teams in crowd open collaboration resulted to be remarkably
successful in connecting diverse perspectives. However, the same
model provoked discomfort as workers could not determine by
themselves the outcome of the match and could not depart from
inefficient teams or decide to remain in the preferred one. We
use Hive as a state-of-the-art representative benchmark of top-
down work coordination in simulated scenarios. Although the
above algorithms adapt to changes in team performance and
task requirements that may occur over time, they are still fully
top-down mechanisms that infer their decisions without actively
engaging workers in the decision-making process.

In summary, relying on top-down coordination to form teams
presents clear limitations. First, it limits the breadth of attainable
work to tasks that the algorithm can decompose and assign to
workers according to predefined criteria. For this reason, top-
down crowdsourcing team formation solutions are ideal for tasks
that are usually well-structured, with known interdependencies,
and clear knowledge boundaries. However, for creative complex
tasks and innovation generation they still tend to ignore
worker self-organizing abilities and under-cater work flexibility.
Subsequently, they fail at empowering crowd workers and
drastically limit personal development opportunities (Roy et al.,
2013; Schriner and Oerther, 2014). Ergo, another major
limitation of top-down solutions—especially in crowdsourcing
collaborative spaces—is the workers’ confinement and isolation
within the collaborative environment where algorithms direct
and workers execute (Berg, 2015; Smith and Leberstein, 2015;
Popescu et al., 2018; Gray and Suri, 2019). Furthermore, the pay-
per-work model leads to the commodification of online work and
online workers (Wood et al., 2019). It also means that workers
must bear “work-for-labor” costs, i.e., costs for activities like
breaks, training, or waiting for work—which are necessary to
perform the task—but they are not part of the work itself (Berg,
2015; Florisson and Mandl, 2018) as they are still treated as

separate entities from the collaboration and the end-result. For
these reasons, ethical issues also arise (Silberman et al., 2018)
concerning the labor conditions of crowd workers, their rights
and legal status (Deitz, 2016), and “lock-in” phenomena where
workers are tied to platform monopolies and non-transferrable
profile information (e.g., performance history). In the last years,
more and more researchers are raising critical voices (Smith and
Leberstein, 2015; Gray and Suri, 2019) regarding the need to
shift away from the canonical top-down crowdsourcing team
formation systems and give workers agency, control, and self-
determination capacity.

2.2. Self-Organization in Team Formation:
Mediating Through Guidance
The term self-organization is present across several managerial
and scientific fields spanning from software development
communities to complex systems and natural science. The
term describes the emergence of spontaneous processes and
interactions between entities of originally disordered systems
(Yates, 2012; Anzola et al., 2017). In team formation, self-
organization usually describes the behavior of individuals as
they form groups and collaborate autonomously and without
pre-defined leadership. In software development, the term self-
organization typically indicates the distribution of workload
among teammates who flexibly shift responsibilities and partake
in decision-making (Highsmith, 2009). Self-organized teams
are known to benefit from transferable authority (Moe and
Dingsøyr, 2008), as well as from robust and adaptable
collaborative networks (Marzo Serugendo et al., 2003). The work
of Lykourentzou et al. (2016b) explores the self-organization
phenomena in the crowdsourcing domain in the way it affects
teamwork. In their study, unfamiliar workers try out potential
teammates before settling into teams, thus self-organizing
into reciprocal work groups. Their results show that handing
decision-making power to crowd workers increases performance
compared to top-down team allocation. Further, as shown in
Rokicki et al. (2015), when applying self-organization to crowd
teams reward systems, ergo when allowing people to decide upon
reward distribution, the self-governing approach results in fairer
compensation than conventional top-down reward systems.

However, simply relying on self-organization as an emerging,
non-controlled property is not enough for digital labor systems.
For one, the need to adhere to financial and quality targets can
suffer from purely self-organized means. Entirely autonomous
teams can risk overspending on resources and coordination
time, two essential aspects of teamwork. Consequently, we
evaluate the efficacy of guided self-organization as a resolution
between central control and self-governance. This relatively
new approach (Prokopenko, 2009) aims to regulate self-
organization in dynamic complex systems by combining task-
independent global goals (e.g., autonomy, fairness, governance)
with task-dependent constraints (e.g., costs, efficiency) on local
interactions. Up to now, this approach has been thoroughly
researched in robotics (Martius and Herrmann, 2012; Nurzaman
et al., 2014). As for crowd work, guided self-organization
is the golden mean between safeguarding worker autonomy
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FIGURE 1 | System architecture displaying the steps taken by the system in accordance with the hackathon design starting from the initialization of the agents and

proceeding to the formation of teams assessed across ten rounds.

and protecting digital work platforms from disintermediation
(Jarrahi et al., 2020). In the past, the principles of guided self-
organization (albeit under a different name) have touched upon
collaborative knowledge production (Lykourentzou et al., 2010)
and crowdsourcing teams (Lykourentzou et al., 2019). These
studies indicate that guided self-organization is a potentially
effective coordinationmodel for crowd collaboration in amanner
that is distributed, efficient, and fair. In our study, guided self-
organization is represented by a hybrid model which combines
bottom-up self-organization with top-down community-based
team formation.

3. METHODOLOGY

In this study, we attempt to re-create and predict emerging
properties of online crowdsourcing collaborative settings where
the actions of multiple workers—and the intervention of team
formation approaches—affect teamwork and team output. Our
simulation consists of three components: the setting (Section
3.1), the agents (Section 3.2), and the modeling of the work

coordination models (Section 3.3). These are fundamental parts
of the simulated scenario and exhibit behavioral properties,
functional objectives, and constraints typically present in real-
world crowd collaborative systems. Figure 1 showcases the
hackhathon system architecture.

3.1. Setting
Our simulation setting is a cycle-based online crowdsourcing
hackathon. Online hackathons represent collaborative scenarios
where several remote crowd workers of different backgrounds
can gather in teams to create projects and compete for prizes.
Even though hackathons have originated from the software
development community (e.g., cybersecurity, game jams, open-
source development, and operating systems) (Nolte et al.,
2018), they are increasingly popular in other domains such as
crowdsourcing innovation (Temiz, 2021; Wang et al., 2021).
Further, as society faces progressively more global challenges,

the help of citizens—and more broadly crowds—is also being
used to find solutions to universal problems such as carbon
emissions, household waste, and deforestation through collective
idea generation (Monsef et al., 2021).

In our scenario, the (hypothetical) company recruits
participants (game developers, marketers, designers, testers)
online from popular crowdsourcing platforms (Amazon
Mechanical Turk, Upwork, etc.) or other venues (e.g., creative
hubs)1 and retains them until the end of the event (Section 3.2).
During the first round, workers are initially grouped randomly
into teams of four and then they are required to collaborate for
a number of consecutive rounds, which for our scenario is set
to ten (Section 3.4). Depending on the approach involved in
the team formation process (Section 3.3) and the level of the
workers’ agency modeled in the system, workers may move to
other teams voluntarily or by top-down means. At the end of
each round, each worker is given a reward (which can be thought
of in monetary terms, e.g., in US Dollars), based on the ranking
of their team’s quality compared with other teams using the
reward function (Equation 1).

reward =
n− j

n− 1
, for team of ranking j, (1)

where n is the number of teams.
The product of each team is evaluated, using a quality function

(described by Equation (2) and introduced in detail in Section
3.2.2, which simulates external evaluation bymeans of an external
jury). At the end of the final (tenth in our simulations) round, the
system automatically identifies the final best, average, and worst
projects computed by means of the teamwork quality function
(Equation 2).

1For this study, we chose AmazonMechanical Turk as the example hiring platform

since its demographics are well-known (Difallah et al., 2018). Nonetheless, we

acknowledge that the population is expected to differ on platforms such as Upwork

and other virtual creative hubs.
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TABLE 1 | Worker attributes observing their mutability, visibility, type, possible value, and distribution.

Attribute Possible attribute Instantiation Mutability Visibility

Knowledge domain Developer; Designer; Marketer; Tester

Random uniform

Immutable

Manifest
Nationality USA; India; Other

Educational level High school; Bachelor; Master or above

Age (years) <20; 21–30; 31–40; 41–50; 51–60; >60 <20 = 2%, [21..30] = 40%, [31..40] = 36%,

[41..50] = 7%, [52..60] = 9%, >60 = 4%

Personality Dominant; Inspiring; Supportive; Cautious D = 50%; I = 10%; S = 20%; C = 20%

LatentRisk appetite [0,1] Beta distribution (β = 2, α = 2)

Expertise [0,1] Beta distribution (β = 2, α = 2)

3.2. Agents
Here we describe the modeling of the two key strategic agents
of the team formation problem, namely the: (i) workers and
their individual characteristics and (ii) the teams, consisting of
multiple workers.

3.2.1. Worker
For the simulation and in line with our working scenario,
we focus on crowd worker profiles that can be involved
in video game development in the context of a hackathon.
We model worker attributes (Table 1) into two categories:
(i) manifest (Section 3.2.1.1) and (ii) latent (Section 3.2.1.2)
properties. Manifest attributes are those worker characteristics
that are straightforwardly noticeable by others and can be
captured into the profiling information of online team formation
systems (Lykourentzou et al., 2021). These attributes are the
workers’ knowledge domain, nationality, educational level, and
age. The latent attributes withhold worker characteristics that
are not directly evident to others but that do affect the
workers’ compatibility, exploratory behavior, and competency.
These latent characteristics are personality, risk appetite, and
expertise. We distribute both manifest and latent attributes in
relation to a set of probability functions based on previous
work and modeled on the likelihood of occurring within a
crowd population.

3.2.1.1. Manifest Attributes
1. Knowledge domain. This attribute captures worker expertise

and is intended for the division of labor within a team.
Following our working scenario on game development,
we model four knowledge domains, namely: (1) Developer
(typically a computer science specialist who creates software
and application), (2) Designer (a game designer invested
in software design, computer graphics, and animation),
(3) Marketer (specialist in charge of monitoring market
trends and creating advertising campaigns), and (4) Tester
(worker in charge of playing the game to find errors and
issues and evaluate the user experience). These domains
are abstract representations of real-world work division in
project-based teams and are relevant to scenarios where
interdisciplinarity is vital to teamwork (Haeussler and
Sauermann, 2020). All four knowledge domains manifest in
the population with a random uniform distribution such that

each trait has an equal probability of being expressed in the
worker pool.

2. Nationality. This attribute imitates cultural differences in
communication style, norms, and customs (Ortu et al., 2017)
and may affect the workers’ likelihood of seeking others
similar to them (Centola et al., 2007). We model three
nationalities as the most common among crowdsourcing
workers (Difallah et al., 2018), namely: (1) USA, (2) Indian,
and (3) Other nationalities. Just like the knowledge domain,
nationalities are distributed randomly and uniformly across
the population.

3. Educational levels. We model the workers’ highest
obtained educational qualification as: (1) High school,
(2) Bachelor, or (3) Master or higher. We include the
educational level in the working model for two main
reasons. The first is that educational background is often
a pivotal factor in hiring processes, including screening in
crowdsourcing platforms such as AMT and Prolific (Prolific
Team, 2021). The second reason is that, like social status,
educational levels affect workers’ preferences for teammates
(McPherson et al., 2001) of similar or higher education. This
attribute is also randomly and uniformly distributed in the
worker pool.

4. Age. We model age in intervals [<20; 21–30; 31–40; 41–50;
51–60;>60] to classify differences in work culture, viewpoints,
and collective identity. Age may also affect worker choice of
teammates, with workers tending to favor collaborators of
similar age with whom they are likely to share similar attitudes
and beliefs (McPherson et al., 2001). The age attribute is
distributed in accordance with crowdsourcing demographic
statistics by Difallah et al. (2018) where<2% are younger than
20 years old,∼40% are between 21 and 30,∼36% are between
31 and 40, over 7% is between 41 and 50, a little over 9% is
between 51 and 60, while the remaining 4% is older than 61.

5. Past average reward. We model past average reward as the
average of the rewards received by the worker through their
previous team collaborations (as a reminder a worker’s past
reward per round is calculated using Equation 1).

3.2.1.2. Latent Attributes
1. Personality. Using the DISC personality model by Marston

(2013), we classify workers’ approaches to leadership roles and
team problems as being: (1) Dominant (D), (2) Inspiring (I),
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(3) Supportive (S), or (4) Cautious (C). DISC was selected as it
is widely used specifically in work-related settings, for example
during hiring processes (Furlow, 2000). Each trait influences
a worker’s attitude to teamwork and mimics interpersonal
factors affecting team processes. Based on the study by
Lykourentzou et al. (2016a), we factor workers’ personalities in
the teamwork quality calculation and bonus teams of equally
balanced personality traits (Equation 2). The aforementioned
study also provides us with the distribution of personalities
in a typical crowd work population, as follows: 50% of the
workers are of personality type D, 20% are of type S, another
20% are of type C, and the remaining 10% are of type I.

2. Risk appetite. This represents to what extent workers are
willing to explore new teams. The concept takes from
the exploration-exploitation trade-off dilemma (Berger-Tal
et al., 2014) concerning the problem of choosing between
conserving a state or exploring new ones. In this case,
a worker’s risk appetite is mutable and determines one’s
tendency to seek collaborators outside their teams. We
model each worker’s risk appetite as value in the [0, 1]
range and distribute it across the population using a beta
distribution probability function (Eugene et al., 2002). The
beta distribution was chosen because it is bounded and can
be easily modeled to illustrate various probability density
functions (e.g., most workers having a low risk level with a
long tail of high risk-workers, or vice versa).

3. Expertise. This attribute concerns the workers’ level of ability
in the knowledge domain in which they belong (Developer,
Designer, Marketer, or Tester). It is not to be confused with
education which is the formal training and schooling of the
worker, which is used for computing the decisions taken by
the workers on the basis of similarity. Expertise is modeled
as a manifest attribute in the sense that, just like in real
conditions, other workers (and the profiling system) can easily
see which knowledge domain each other worker belongs to,
but not how good the worker is in the specific domain. In
our simulation, workers’ expertise is treated as an immutable
parameter and is distributed in the population with a beta
probability distribution function (PDF) similar to a bell curve
(with parameters α = 2 and β = 2), i.e., most workers are of
average expertise in their respective knowledge domains, and
less workers are either complete novices or complete experts.

4. Homophily. This attribute describes the degree to which
workers tend to prefer working with people that are more
or less similar to themselves. We model homophily as it is
one of the most studied motivators for forming social ties
(McPherson et al., 2001). This principle structures human
connections and knowledge exchange as well as restricting
social worlds and interactions through subjective preferences
for similar nationality, age, education, etc. (McPherson et al.,
2001). We model worker’s homphily as a cosine similarity
score between two workers’ vectors consisting of the attributes
knowledge domain, nationality, educational level, and age.

3.2.2. Team
A team is a group of workers collaborating together for the
duration of one or more rounds. Each team is a combination of

the participating workers’ attributes and their interactions, which
affect the team output. Specifically, we model the output of each
team, hereby referred to as teamwork quality, as a weighted sum
of three elements, namely the team’s: (1) skill, (2) interpersonal
compatibility, and (3) size:

Teamwork Quality = π × Team skill+ µ

×Interpersonal compatibility

+(1− π − µ)× Team size, (2)

where:

1. Team skill is modeled as a weighted sum of the team
members’ expertise across the knowledge domains of the
task, adjusted by a diminishing factor for repetitive expertise.
Higher individual levels of expertise and higher coverage of
the task’s knowledge domains lead to higher team skill. We
detail the modeling of the team skill element in Section 3.2.2.1.

2. Interpersonal compatibility is the degree to which the
different teammates can work together harmoniously
according to their work personality attribute. Higher coverage
of the four personality types foreseen by the DISC test (D, I,
S, and C) leads to higher teamwork quality. The presence of
two or more members with personality type D (Dominant)
lowers teamwork quality as it is known to produce clashes
in collaborative crowd work settings (Lykourentzou et al.,
2016a). We detail the modeling of this element in Section
3.2.2.2.

3. Team size. Team size affects teamwork quality, with teams
above or below a certain threshold producing less-than-
optimal results.

All three elements are measured in the [0, 1] range, which also
bounds teamwork quality in the same range. The coefficients π

and µ can vary depending on the desired modeling. For our
specific simulation, we set them to π = 0.4 and µ = 0.4 (see
Section 3.4).

3.2.2.1. Team Skill
Team skill is calculated as the combination of: (1) coverage
of the task’s knowledge domains by the members of the team,
and (2) their expertise levels per domain. We assume that
workers’ expertise contributes positively to teamwork and that
the workers’ skill diversity promotes team interdisciplinarity.
In case there are several teammates with the same knowledge
domain in a team, we apply a diminishing factor to their skill
utility in descending skill order. For example, in a team where
three workers share the same domain, the second most expert in
that domain has their skill utility discounted by a diminishing
factor (which for our simulations is set to 0.10). All other
lesser experienced workers of the same domain have their skill
utility diminished by the same factor squared. We also discount
10% to all first-met teammates to account for the fact that the
process of getting to know others and adjusting to new ways
of working together taxes teamwork. Team skill is therefore
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calculated as follows:

Team skill =
1

st
×

n
∑

d=1

(

cd
∑

i=1

expertised,i × θ i−1), (3)

where st is the size of the team, n is the number of total domains
(four in this study), cd is the number of workers in domain d,
θ = 0.1 is the diminishing factor for multiple expertise, and
expertised,i is the expertise of worker i in domain d.

3.2.2.2. Team Compatibility
We recognize the diversity of personality types as a representative
measure of team interpersonal compatibility. More specifically,
according to the DISC personality model, the more diverse and
balanced a team is in regards to their DISC personalities, the
more performant that team will be. To this end, the best team
in our modeling is one the members of which cover all four
DICS personality types. Such a team is optimal because it avoids
both work disputes (which take place in the event of too many
dominant types) and a lack of cohesion (which happens in case
of missing personality types; resulting e.g., in lack of leadership
and work direction). We apply a penalty of factor 0.2 to teams
that do not have the full DISC personality spectrum and a
penalty of factor 0.4 to teams that have more than one worker
with of Dominant personality type (D type). We bound team
compatibility to a range [0, 1]. Finally, the team compatibility
function looks as follows:

Team Compatibility =

{

0.4+ 0.2× (nper − 1), pD < 2
0.2× (nper − 1), pD ≥ 2,

(4)

where, nper is the number of all unique personality types, and
pD is the number of workers with a Dominant personality type
within the team.

3.2.2.3. Team Size
The team size is the third factor that affects team quality
in our setting. Literature in small groups research (Moreland,
2010) tends to consider that groups of less than three people
do not constitute a team, and that the minimum team size
is three. The reason, is that dyads are more ephemeral than
larger groups, and certain phenomena like majority/minority
relations, coalition formation, and group socialization can only
be observed in larger groups. At the same time, social theories
underscore the importance of also having an upper critical
mass for team collaboration, beyond which the collaboration
effectiveness diminishes due to coordination costs (Marwell et al.,
1988; Kenna and Berche, 2012). In our setting we apply a penalty
factor of 0.1 to teamwork size utility for each additional worker
above a maximum threshold of team size five and to each worker
needed to reach a minimum team size of three. The team size
penalty factor is expected to implicitly guide workers in the self-
organized and hybrid approaches to form teams that are within
an ideal size range between three and five and discourage them to
settle for smaller or larger configurations. The team size function

is calculated as follows.

Team size utility =























max(0, 1− 0.1× (SMIN − steam)),
steam < SMIN

max(0, 1− 0.1× (steam − SMAX)),
steam > SMAX

1, otherwise,

(5)

where steam is the size of this team, and SMIN = 3 and
SMAX = 5 is the minimal and maximal non-penalized size of a
team, respectively.

3.3. Work Coordination Models
We distinguish and compare three work coordination models.

1. The first is a top-downmodel, where the state-of-the-art team
formation algorithm Hive appoints teammates without any
input from the workers. This strategy approaches TFPs in a
controlled, directed, and centralized way. For this model we
use the Hive algorithm (Salehi and Bernstein, 2018) designed
to optimize team formation from a community-based, top-
down approach.

2. The second is a self-organized model, where workers govern
the team formation processes (grouping and dismantling),
with certain rules concerning whether teams should dismantle
in the event of minority dissent or not. This approach
is inspired by the SOT framework (Lykourentzou et al.,
2021) honoring workers’ preferences of teammates through
a voting system combined with a graph cutting algorithm.
We foresee two SOT models called Radical SOT (R-SOT)

and Conservative SOT (C-SOT). While these two systems
share the same bottom-up team formation principles, they
differ in the way they handle team cohesion after changes
in workers’ preferences. Where R-SOT dismantles teams and
constructs new ones each time a teammember leaves (hence it
radically changes team structures), C-SOT preserves teams by
retaining their structure and allowing members to leave and
join (thus conserving team states where possible). We chose
to model two kinds of bottom-up strategies given that certain
tasks favor one model over the other (for example radical vs.
incremental innovation).

3. The third is a hybrid model; this is a mix of top-down
and bottom-up team formation strategies where algorithmic
intervention supports and is driven by worker feedback. In the
hybrid model, network efficiency, tie strength, and workers’
agency are combined into a unified system where teams are
regularly dismantled in the event that at least one teammate
wishes to leave.

3.3.1. Top-Down Model: Hive
For the implementation of the top-down team formation
strategy, we adopt Hive (Salehi and Bernstein, 2018), a
crowdsourcing collaborative hierarchical team formation model
for which community structures dictate network changes. Hive
models workers as part of a collaboration graph, with workers
as the nodes and the edges corresponding to prior worker
collaborations. The objective of the algorithm is to regularly
shuffle teams so as to bring together workers with different
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viewpoints (i.e., far away in the graph), while conserving tie
strength. To do so, Hive groups people in teams with one fixed
leader, and then intermixes the teams by rotating the people
who are not leader. The original Hive paper does not specify
how each leader is appointed, or which is the optimal team
size to be used. To be able to apply Hive on our setting, we
needed to make a decision concerning these two parameters;
in both cases we made the decision that is the most favorable
for Hive. Concerning team size, we used teams of five. This is
the minimum team size for a worker team to have chances to
cover all DISC personalities, plus one for the fixed team leader.
This way, the Hive teams always have a leader and always have
a chance to cover all DISC personality types, i.e., they have a
chance to be optimal. Concerning leadership, we appoint the
fixed (non-movable) leader of each team to be the team member
who has a D personality type, if one such member exists. This
way the Hive teams avoid being leaderless, which would result in
less-than-optimal results.

In the event of too many workers of personality type D within
the worker population, we randomly draw a subset of D-leaders
equal to the number of teams. After all team leaders are assigned
to their teams, we randomly match workers to the teams, in
the same way that Hive randomly initializes the movable team
members in the beginning of the task. With these modeling
decisions in place, we proceed to model the Hive approach for
our simulation. We first introduce the concepts and calculations
of network efficiency and tie strength, which are central to the
Hive algorithm. We then implement these metrics as part of
Hive’s objective function, and finally we describe the modeling
of the stochastic search algorithm used to find possible team
formation moves.

1. Network efficiency: The efficiency of a network describes how
effectively it transports information across its nodes (Latora
and Marchiori, 2001). Network efficiency is usually calculated
as the average of the inverse of the minimal path length
between every two nodes. By applying network efficiency to
the simulation, we attribute the value 1 for all familiar ties
(meaning ties linking workers who have collaborated in the
past) and the value +∞ to those ties that do not share direct
collaborative history. Formally, the network efficiency NE in
the system is calculated as follows:

NE(G) =
1

N(N − 1)

∑

i6=j∈G

1

dij
, (6)

where N is the number of workers in the system and dij is
the minimal path length between node (worker) i and node
(worker) j.

2. Tie strength: Tie strength represents the level of closeness or
affinity between two nodes of a network. In the simulation, tie
strength is intended as the calculation of relationships between
workers, and ties between nodes represent the workers’
collaboration history. Following the Hive computation of
tie strength, we apply a logistic function and dampening
factor to represent incremental familiarly and progressive
detachment, respectively.

Algorithm 1: Stochastic search algorithm. The algorithm
attempts to add as many valid rotations as allowed to the
network graph, as long as the new rotation surpasses the
current state of the objective function (Equation 7) and until
either all moves are exhausted or a local maximum is reached
(Salehi and Bernstein, 2018).

Data: Network graph Godd

Result: Network rotation solution
solution← {};
bad_moves← {};
while true do

candidate, new_move← AddValidMove(solution,
bad_moves);
if candidate is None then

return solution;
end

G′ ← Transform(Gold, candidate);
G← Transform(Gold, solution);
if f (G′) > f (G) then

solution← candidate;
else

UpdateBadMoves(bad_moves, new_move);
end

if random()≤ ǫ then

return solution;
end

end

(a) The logistic function takes two parameters k = 8 and
x0 = 0.2 used to simulate the rapid strengthening of
relationships at the start of new collaborations (where tie
strength is lower) and their slow increment over time.

(b) The dampening factor captures the weakening of tie
strength when workers no longer collaborate and are
therefore not directly exposed to one another. For its
calculation, we adopt the same value as Salehi and
Bernstein (2018) (λ = 0.8).

3. Objective function: The objective function of Hive consists of
combining network efficiency and tie strength; this is since,
in the event of workers changing teams, network efficiency
grows as new collaborations emerge (and information gets
transported across the network) while tie strength decreases as
there are less close relationships. We factor these parameters
in the simulated model with a constant value α = 0.5 as
described in Equation (7). Here, we normalize tie strength by
a constant value c = 0.005.

f(G) = α×TieStrength(G)+ (1−α)×NetworkEfficiency(G)
(7)

4. Stochastic search: As also discussed by the makers of Hive
(Salehi and Bernstein, 2018), effectively rotating teams in
order to reach optimality is an extremely complex and non-
uni-modular task [O(2N)]. We implement the stochastic
search algorithm of Hive as described in the stochastic phase
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Algorithm 2: Add valid move algorithm. This algorithm
loops for every team and for every worker (that are not team
leaders), until it finds a worker and a team (represented by its
leader) to meet the following five conditions: 1. the worker
is not in the team; 2. current team size is within the system
constraints; 3. target team size is within system constraints;
4. this combination is not a badmove; 5. this combination is
new.

Input: Current solution solution, bad moves bad_moves
Result: Candidate solution after adding one move, one valid

move
leader_ids← Shuffle(GetTeamLeaders());
all_teams← Shuffle(GetTeams(solution));
for team t in all_teams do

for worker w in t do
if w NOT in leader_ids then

for leader l in leader_ids do
if l NOT in t AND
Size(t) > SMIN AND

Size(l) < SMAX AND

w, l NOT in bad_movesAND
solution(w) 6= l then
candidate, new_move←
AddOneMove(solution, w, l);
return candidate, new_move;

end

end

end

end

end

1 (Algorithm 1) and phase 2 (Algorithm 2). In essence, the
stochastic search algorithm finds a random valid move, i.e.,
it identifies which worker should move to which team, which
carries greater utility than the previous move considered by
the algorithm. It returns a solution when the search space
has been exhausted or if the ǫ value is reached indicating the
probability of stopping the search.

3.3.2. Bottom-Up Model: SOT
In the bottom-up model, we simulate team formation on the
basis of workers’ preferences and affinities. In this context, teams
strictly depend on what workers prefer and how likely they
are to form effective teams with regards to their personality,
knowledge domain, and team size. The simulation represents an
abstraction of workers’ behavior, performance, and constraints
while they form teams in a self-organized manner. During each
round workers are allowed to change teams after a deciding and
searching phase.

1. Deciding phase: In this phase, workers evaluate the strength
of their risk appetite against the reward they received in the
previous round. The factor with the highest score (being it
either risk appetite or reward Equation 1) determines whether

that worker will decide to remain in the same team in the
following round or whether they will join another team.
A higher risk appetite stirs workers to leave and seek new
coalitions in search for higher future rewards, whilst a lower
risk appetite means that the worker will stay with their existing
team even for lower rewards.

2. Searching phase Workers who decide to change teams
proceed with the search phase, where they perform an
evaluation of compatibility of the teammates and teams
available to them. Specifically, during this phase, workers
assess all possible combinations of teams of four by evaluating
three other available workers based on a cosine similarity
score of the four manifest attributes, i.e., the attributes of
their co-workers that they can readily see (knowledge domain,
nationality, educational level, and age). The cosine similarity
score does not factor in the average past reward of the
workers as it only deals with their manifest profiling attributes.
However, in the event that two workers have the same
similarity score, their average past reward is considered as a
tie breaker. The search phase is further differentiated between
the two bottom-up model variations as described below.

(a) Conservative SOT (C-SOT)According to the conservative
strategy, existing teams are given priority in choosing
whether to admit newmembers or not. The C-SOT strategy
considers existing teams as those that have worked together
in the previous round and have at least two team members
who decided to continue working together, during the
deciding phase. For the rest of the workers and teams
that do not fit into this description, the strategy considers
these workers as available and unassigned entities. Then,
the decision-making process is based on the homophily
score (how similar the candidate team members are)
constrained by a threshold (Section 3.4) determining the
minimum similarity required to form matches. Teams
recruit (are matched to) workers who have a similarity
score higher than the threshold and higher than the rest
of the available workers. If the similarity between existing
teams and available solo workers is below the threshold
(thus candidate teammates do not classify as sufficiently
similar to any given team), the C-SOT model ignores the
previously formed teams and matches available teammates
based on the highest homophily score. The strategy then
puts similar and available teammates into teams of four.
In the case of equal similarity between workers or between
workers and teams, the strategy prioritizes matches of the
highest teamwork quality. Finally, in case that workers still
cannot be matched, the C-SOT strategy puts those workers
on hold until the next searching phase.

(b) Radical SOT (R-SOT)While the C-SOT strategy attempts
to preserve the existing teams’ structures even though one
or more members decide to leave, in the R-SOT strategy,
a team is considered dismantled and all of its members
are made available even if one worker from that team
decides to leave. This means that available workers have
higher chances of forming new teams since they are given
access to more options. Besides this difference in the way
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of handling team deconstruction, the R-SOT follows the
same approach as the C-SOT. It too assesses all possible
combinations of similarities between four available workers
and forms teams of the highest similarity score. In the event
that no three workers are considered sufficiently similar to
be matched, the R-SOT strategy strives to match workers
with existing teams (intended as those that did not lose
teammates in the deciding phase). If workers can still not be
matched neither with a newly formed nor with an existing
team, the team formation model leaves these workers on
hold until the next searching phase.

3.3.3. Top-Down and Bottom-Up Models Combined:

HiveHybrid
Although bottom-up approaches to crowd TFPs—such as the
SOTmodel—have certain advantages over top-down algorithmic
solutions, their spontaneous nature and weak controllability can
result in suboptimal solutions. Workers often cannot access the
full array of options at once, mostly due to external constraints
such as budget, availability, and time. More so, a system that
fully relies on the workers’ choices to form teams is susceptible
to errors of judgment as workers evaluate others subjectively and
cannot possess the same global overview of a centralized system.
This means that workers cannot always judge the optimality of
a match on the basis of both local and global objectives as their
angle of vision is often restricted by what they can experience.
This locality issue is even more present when the pool of workers
is considerably large and workers are limited by howmany people
they can meet. Under the light of these inherent limitations of
fully bottom-up solutions to crowdsourcing TFPs, we also model
a blended approach inspired by Prokopenko (2009) who point
that self-organization can (and should) be guided by algorithmic
top-down mediation. Similar works (Lykourentzou et al., 2010,
2019; Martius and Herrmann, 2012; Nurzaman et al., 2014;
Jarrahi et al., 2020)—either through conceptualization or real-
life implementations—have proposed guided self-organization

as the ideal strategy linking worker agency with algorithmic
optimization. Our implementation of guided self-organization
differs in the way it is applied to a simulated collaborative
crowdsourcing scenario where workers are recommended by the
algorithm whether to change teams or not. The HiveHybrid
model is designed precisely to combine global objectives with
local constraints in large-scale collaborative crowdsourcing. The
system combines a bottom-up worker-centric SOT model with
a top-down community-based Hive model. In the HiveHybrid,
workers are allowed to decide to leave a team or remain as their
choice is honored and optimized through a community-based
team rotating algorithm. The algorithm identifies possible moves
(rotations that would benefit the global objective function) and
the workers can either accept or reject this offer if their appetite
for exploration (risk appetite) indicates so.

3.4. Experimental Parameterization
Our simulation is designed to run a series of experiments where
different populations and team formation models are tested and
evaluated for their best, worst, and average teamwork quality. The
following are the experimental parameters and corresponding

settings used for this study. For the implementation of the Hive
algorithm both as a baseline for top-down allocation and as part
of the HiveHybrid model, we use the same parameters stated in
the work by Salehi and Bernstein (2018).

1. Experiment rounds (n): By rounds we intend the
collaboration cycles during which workers form teams
and collaborate. For this study, we used a fixed experiment of
10 rounds.

2. Teamwork quality:We calculate teamwork quality as follows.
We first generate a batch of user agents as described in Section
3.2. For this batch, we run the simulation six times, each time
extracting the best, average, and worst teamwork values, and
then calculating the mean of those values to get the best,
average, and worst teamwork quality of the batch. We repeat
the process for thirty independent batch runs and average out
the results. The procedure is designed to smooth out random
fluctuations and yield less noisy simulation results.

3. Population (x): The default population size is set to 20
workers. We consider this to be a rounded estimation
of a basic size of participation required for creative
tasks of this kind (online hackathon, expert crowdsourcing
collaboration, etc.). Then, to examine generalizability, we
gradually increase this number and experiment with larger
populations ([30, 40, 50, . . . , 100]).

4. Team size threshold (SMIN , SMAX): We constrain teams
within a range of three (minimal size) and five (maximal size)
teammates. We apply these threshold since we expect smaller
teams to be hindered by a shortage of knowledge domains and
personalities while larger teams to be taxed by coordination
and communication costs, as explained in Section 3.2.2.3.

5. Risk appetite (β): We represent worker’s risk appetite using
two mirror symmetric distributions. For the explorative
behavior (high risk appetite) we use a beta distribution of
negative parameter range (β ∈ [−5,−2]), while for the
exploitative behavior (low risk appetite) we use its symmetric
positive parameter range (β ∈ [2, 5]). We further model
a neutral risk level to be bounded within a probability
distribution of β = 2.

6. Homophily threshold (θ): The homophily threshold
determines the extent to which people are willing to
accept working with others based on their in-between
attribute cosine similarity. Since we use four dimensions
to determine workers’ similarity (knowledge domain,
nationality, educational level, age), we bound the homophily
threshold within the range [1, 4]. The workers’ default
homophily threshold is set to 2.8 meaning that any similarity
below this value is not considered sufficient to form a match.

7. Teamwork quality coefficients (π , µ): The coefficients π

and µ represent the weights attributed to team skill and
interpersonal compatibility respectively. The default values are
set to 0.4 for both π and µ. While we use these coefficients
to adjust the weights of team skill and interpersonal
compatibility, the same weight is taken off from the team size
(1 - π − µ)2.

2This applies less weight to that factor.
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4. RESULTS

In Section 4.1, we compare teamwork quality across the four
models: Hive, C-SOT, R-SOT, and HiveHybrid and address
the first research question (RQ1: How does bottom-up team

formation compare with top-down and hybrid approaches?).
Next, we address the second research question (RQ2: How

do population behavioral tendencies affect the outcome of

bottom-up online teamwork?) in three Sections, one for each
of RQ2 sub question: Sections 4.2 and 4.3 examine teamwork
quality according to changes in the workers’ risk appetite and
population size distributions, respectively, while The descriptive
statistics report the mean and standard deviation (sd) of the
model’s teamwork quality. The standard deviation indicates the
average amount of variability within a set of experiments. For
example, mean = 0.716 and sd = 0.024 of the R-SOT model’s
best quality indicate, respectively, the mean and the standard
deviation of the best teamwork gathered from thirty independent
batch runs, as explained in the Methodology (Section 3.4).

4.1. Comparing Models: Radical
Bottom-Up Yields the Highest and Lowest
Teamwork Quality
In this Section we address the first research question, namely
RQ1: How does bottom-up team formation compare with top-

down and hybrid approaches? Figures 2–5 shows the results of
running a comparative study with all four models (R-SOT, C-
SOT, Hive, and HiveHybrid) and utilizing the parameters stated
in Section 3.4. We analyse the results below.

4.1.1. Best Teamwork Quality
R-SOT has the highest average best quality (mean=0.716,
sd=0.024), followed by C-SOT (mean = 0.698, sd = 0.022),
HiveHybrid (mean = 0.689, sd = 0.030), and Hive (mean = 0.683,
sd = 0.029) indicating that bottom-up models outperform the
rest in forming the most competitive teams. Although standard
deviations are relatively close across models, the standard error
is greater in HiveHybrid than all other models possibly due to
the unpredictability of combining suggested changes from the
top-down community-based model with workers’ decision.

4.1.2. Average Teamwork Quality
R-SOT still performs better than the rest, although its mean is
only marginally higher than the other models (mean = 0.572, sd
= 0.016) followed by HiveHybrid (mean = 0.572, sd = 0.023),
Hive (mean = 0.567, sd = 0.021), and C-SOT (mean = 0.563, sd
= 0.018). In this comparison analysis, standard deviations are
fairly close, while the standard error of HiveHybrid remains,
by far, the largest in this comparison of the average teamwork
quality. In fact, HiveHybrid’s large standard error is present in all
evaluations of teamwork quality.

4.1.3. Worst Teamwork Quality
HiveHybrid has the least worst teamwork quality as its mean is
above all others (mean = 0.467, sd = 0.024), followed by Hive
(mean = 0.460, sd = 0.019), C-SOT (mean=0.429, sd = 0.018), and
R-SOT (mean = 0.416, sd = 0.020). These final results indicate that

the hybrid model is efficient at reducing the segregating patterns
present in bottom-up systems, which lead to great variations of
teamwork quality. Although the standard deviations are fairly
close across models, HiveHybrid retains the largest standard
error making it less consistent in its team formation.

4.1.4. Statistical Analysis: R-SOT Outperforms in the

Best and Loses at the Worst Teamwork Quality
Running a one-way ANOVA test on the results from the
comparison of the teamwork quality between the four models we
find the following.

• Best teamwork quality: The best teamwork quality is
statistically significant between groups [F(3, 116) = 10.477, p <

0.001]. Specifically, R-SOT performed significantly better than
C-SOT (p=0.003), Hive (p<0.001), and hybrid Hive (p=0.001).
• Average teamwork quality:No statistical difference was found

between models when comparing their average teamwork
qualities [F(3, 116) = 1.394, p < 0.248].
• Worst teamwork quality: We found statistically significant

results between groups with the Worst teamwork quality.
[F(3,116) = 35.122, p < 0.001]. Here, R-SOT performed
significantly worst than C-SOT (p = 0.036), Hive (p <

0.001), and hybrid Hive (p < 0.001). The R-SOT model also
performed significantly poorly compared to Hive (p < 0.001),
and hybrid Hive (p < 0.001). Lastly, Hive and hybrid Hive did
not differ significantly.

4.2. High Levels of Risk Appetite Segregate
Teamwork Quality in Bottom-Up Models
This Section, combined with the two Sections that follow,
dives deeper into the performance of bottom-up large-scale
collaboration, and contributes to answering the second research
question RQ2: How do population behavioral tendencies affect

the outcome of bottom-up online teamwork? Specifically, it
deals with the sub-question RQ2.1: How do different risk

appetites affect teamwork output in bottom-up models?

Looking at the highest teamwork quality (Figure 3) results across
the two bottom-up models (R-SOT and C-SOT) and controlling
for levels of the β value of the risk appetite distribution in the
population, we note the following.

4.2.1. Best Teamwork Quality
The radical self-organization approach (R-SOT) achieves better
results in terms of the best teamwork quality (mean =

0.711, std =7.42e−3) compared to the conservative self-
organized approach (C-SOT) (mean = 0.691, std =8.99e−3).
This result indicates that the overall risk level of a population
directly affects the workers’ chances of forming optimal teams
in bottom-up team formation strategies. Furthermore, high
levels of risk appetite within a crowd population seem to be
particularly beneficial to systems advocating radical changes in
team structure. By lowering the overall risk appetite levels in both
R-SOT and C-SOT, the performance of the best teamwork quality
progressively suffers, dropping from 0.72 to 0.70 for R-SOT, and
from 0.71 to 0.68 for C-SOT.
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FIGURE 2 | Teamwork quality comparison across four models: Hive, C-SOT, R-SOT, HiveHybrid. The boxplot displays the mean, standard deviation, and standard

error of the teamwork quality. Overall, the best teamwork quality (Equation 2) belongs to the bottom-up models R-SOT (mean = 0.716) and C-SOT (mean = 0.698)

followed by hybrid (mean = 0.689) and top-down (mean = 0.683). The average performance is fairly equal between models, with HiveHybrid and R-SOT having a

slightly higher mean (mean = 0.572). The worst teamwork quality comes from the bottom-up models (R-SOT mean = 0.416, C-SOT mean = 0.429), followed by Hive

(mean = 0.460). HiveHybrid performs the best at forming the least worst teamwork quality (mean = 0.467). (A) Best teamwork quality for Hive, C-SOT, R-SOT, and

HiveHybrid. (B) Average teamwork quality for Hive, C-SOT, R-SOT, and HiveHybrid. (C) Worst teamwork quality for Hive, C-SOT, R-SOT, and HiveHybrid.

4.2.2. Average Teamwork Quality
Results for the average teamwork quality are similar across both
bottom-up models with R-SOT (mean = 0.569, std =2.16e−3)
and C-SOT (mean = 0.562, std =3.03e−3) sharing similar
outputs. These results indicate that the risk levels do not
necessarily affect average performance despite of which bottom-
up team formation strategy is used.

4.2.3. Worst Teamwork Quality
Although the radical self-organized approach performed the
highest when it came to the best teamwork quality, we observe
that this approach is also the one that performs the worst
from the two models R-SOT (mean = 0.422, std =2.90e−3)
compared to C-SOT (mean = 0.435, std =2.43e−3). This result
indicates that radically bottom-up approaches may inadvertently
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FIGURE 3 | Comparison of the best and worst teamwork quality between

bottom-up models, namely C-SOT and R-SOT, with varying risk appetite

levels. The x axis illustrates the different risk levels generated according to two

mirroring beta distributions: negative values (β ∈ [−5,−2]) illustrate an

exploratory, risk-prone user behavior (the more negative the more risk-prone);

positive values (β ∈ [2, 5]) illustrate an exploitative, risk-averse behavior (the

more positive the more risk-averse). We observe that the best teamwork

quality is affected by risk appetite, and that it decreases for both models as the

users’ willingness to change teams decreases. The average and worst

teamwork quality remain unaffected by changes in the user population’s risk

levels. (A) Best teamwork quality for C-SOT and R-SOT with different risk

appetite levels. (B) Average teamwork quality for C-SOT and R-SOT with

different risk appetite levels. (C) Worst teamwork quality for C-SOT and R-SOT

with different risk appetite levels.

exacerbate the differences between teams, with the best workers
choosing to team up with the best workers, leaving many of
the average or low-performing workers behind, and causing
segregated quality outputs.

FIGURE 4 | Comparison of the best and worst teamwork quality between two

bottom-up models (C-SOT and R-SOT) with different population sizes. The x

axes show the different simulated population sizes per hackathon in the

∈ [20, 100] range. We observe that the best teamwork quality for both

bottom-up models improves as the population grows from 20 to 90

individuals, and workers have more choice of teammates, reaching stability

with populations of more than 90 and maintaining a best teamwork quality of

≈ 0.77 in both models. However, the worse teamwork quality also decreases

steadily in both models lowering from ≈ 0.43 to ≈ 0.37 as the population

grows indicating that large populations are not always beneficial to the

performance of all teams. (A) Best teamwork quality for C-SOT and R-SOT

with different population sizes. (B) Average teamwork quality for C-SOT

and R-SOT with different population sizes. (C) Worst teamwork quality for

C-SOT and R-SOT with different population sizes.

4.3. Large Populations Strengthen Strong
Teams in Bottom-Up Models
This Section answers the sub-question: RQ2.2: How do different

population sizes affect teamwork output in bottom-up
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FIGURE 5 | Comparison of the best and worst teamwork quality between

bottom-up models (C-SOT and R-SOT) with different homophily thresholds.

The x axes show the workers’ different homophily levels (θ ∈ [1, 4]) where the

lowest θ value represents the highest possible tolerance toward differences

between workers’ attributes, and the highest θ value the lowest tolerance.

Even though the best teamwork quality for the two models improves as the

homophily threshold grows, particularly with thresholds θ >2, the worst

teamwork quality remains overall stable with the exception of R-SOT peaking

around a threshold θ ≈ 1.5 before settling around a worst teamwork quality of

0.42 with θ > 2.5. (A) Best teamwork quality for C-SOT and R-SOT with

different homophily (preference of working with similar teammates)

thresholds (θ ∈ [1, 4]). (B) Average teamwork quality for C-SOT and

R-SOT with different homophily thresholds (θ ∈ [1, 4]). (C) Worst

teamwork quality for C-SOT and R-SOT with different homophily

(preference of working with similar teammates) thresholds (θ ∈ [1, 4]).

models? In the basic experimental setting (Section 3.4), we used
a population size of 20 workers, which is a size that guarantees
that workers can process the information concerning all other
candidate co-workers effectively. However, the population size

is a factor that can critically affect performance, as it is known
to affect the worker collective’s coordination costs. A larger
population means a larger search space of available candidate
teammates, and therefore more effort needed by the workers
to process suitable teammates (Kittur and Kraut, 2008). We
simulate nine separate and increasing population sizes starting
from 20 (our basic simulation setting) and going up to 100
workers per pool to observe how the average best, worse, and
median teamwork quality vary accordingly.

4.3.1. Best Teamwork Quality
With an incremental growth in population size, both R-SOT
and C-SOT improve their best performance shifting from an
average best teamwork quality of 0.70 to one of 0.78. This
result shows that bottom-up approaches particularly benefit from
large scale participation as they rely on the diversity of workers’
backgrounds and skills to form optimal teams.

4.3.2. Average Teamwork Quality
As also observed in the previous Section for the parameter of risk
appetite, we observe that the average teamwork quality neither
benefits nor deteriorates from changes in population size and it
remains relatively constant around 0.568.

4.3.3. Worst Teamwork Quality
Lastly, the worst quality of bottom-up approaches drops from
an average of 0.43 to an average of 0.36. The worst quality of R-
SOT (mean=0.416) is indeed worse than C-SOT (mean= 0.429).
This result may be explained by the fact that the R-SOT strategy
dismantles teams having at least one unsatisfied worker and gives
access to many more available workers of attractive attributes
who can therefore settle for higher payoffs in the next round.
Similarly to the results of the previous Section, here too we
observe that the radical model (R-SOT) is the one yielding the
highest best and the lowest worst quality.

4.4. Similar Workers Produce Higher
Teamwork Quality in Bottom-Up Models
In this section, we address the last sub-question RQ2.3: How

does homophily, i.e., the tendency to prefer working with

similar teammates, affect teamwork output in bottom-up

models? The homophily threshold determines the workers’
tolerance to the diversity of attributes in others. Setting low
homophily thresholds allows workers in the simulation to form
larger teams since they are more open toward diverse team
members. Using higher homophily thresholds pushes workers to
carefully choose their teammates and only be interested in those
who are most similar. Since there are four similarity attributes in
the calculation of the cosine similarity score (knowledge domain,
nationality, educational level, age), we use a homophily range of
[1, 4] with a step of 0.3 allowing us to test ten variations of the
threshold search space.

4.4.1. Best Teamwork Quality
Testing all simulated thresholds we observe that the best
teamwork quality of C-SOT is not affected by changes in
homophily. However, R-SOT’s best teamwork quality rapidly
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grows as the threshold increases from 0.50 with θ = 1.0 to 0.70
with θ = 2.8. After this growth, the best teamwork quality of the
R-SOT model stabilizes and does not improve.

4.4.2. Average Teamwork Quality
Similarly, the average teamwork quality is not significantly
affected by changes in homophily in the C-SOT model while the
R-SOT’s average teamwork quality grows quite rapidly from 0.44
to 0.57 (from θ = 1 to θ = 1.5), and continues to rise before
stabilizing around 0.72 with θ > 2.

4.4.3. Worst Teamwork Quality
The worst teamwork quality is not affected by changes in
homophily threshold for the C-SOT with the worst teamwork
quality remaining stable at around 0.44. R-SOT’s worst teamwork
quality is more drastically affected by an increase in the
homophily threshold, with an increase in quality between θ =

1.0 and θ = 1.6 and then a gradual decrease and stabilization
after θ = 2.5. This is a similar pattern (sharp rise and then
stabilization) like the one we saw R-SOT following in the best and
average teamwork quality results, albeit with less intensity as we
go from best to worst quality.

5. DISCUSSION

5.1. Bottom-Up Models Are Ideal for Large
Scale Crowdsourcing Collaborative
Innovation
We observe that the bottom-up models R-SOT and C-SOT are
more effective than the top-down (Hive) and hybrid solutions
(HiveHybrid) at forming teams with the best teamwork quality.
In these self-organizing systems, workers seek collaborators
based on how likely they are to explore the search space and how
tolerant they are toward diverse teammates. Whether workers
will explore further teammates depends on the reward they
received with their old team, bounded by their risk appetite.
For example, low-risk workers will keep working with the same
teammate even if they did not get a high reward, while high-risk
workers will change more frequently. Although skill is therefore
not explicitly present in the worker’s search function, since it
is a latent feature that workers cannot directly have access to
concerning their teammates, we observe that gradually workers
discover their in-between skills by implicitly evaluating the results
of their existing collaborations against others through the rewards
each team received.

This result shows that bottom-up systems lift the requirement
for intensive skill profiling before they can make good team
formation decisions, and it is important for platforms for multiple
reasons. First, it renders bottom-up models more appropriate
for innovation-related tasks for which the exact skills that will
be needed to solve the task are not easily measurable or even
known a priori to the collaborative platform (Gerber et al.,
1999). Second, by lifting the requirement for designing tailor-
made profiling tests and team formation algorithms, bottom-
up models are more cost-effective than their top-down or hybrid
counterparts, and are also particularly useful for introducing new
tasks in the platform for which no profile information concerning

worker competencies or matching mechanism is yet present. One
important point to make here is that these advantages of bottom-
up models refer to the best teamwork quality achieved, but that,
at the same time, these models also tend to segregate the worst-
performing teams. In other words, bottom-up models help form
principally strong and competitive coalitions which may form at
the expense of other teams. Therefore, self-organization could be
more appropriate and cost-effective for commercial platforms
targeting at the competitive production of tasks, rather than tasks
for which “no worker is left behind” (e.g., in educational settings).
Overall, our comparative analysis of team formation system
models in crowdsourcing collaborative innovation indicates that
platforms can “trust the crowd” to form teams as long as
they favor competition over cooperation and as long as they
prefer competitive teams over a centralized re-distribution of
social capital.

5.2. Hybrid Systems Are Best for
Semi-centralized Social Capital
Redistribution
As we have seen, bottom-up systems are the best at producing
teams of the highest teamwork quality. However, having the
best team is not the sole representative metric of collective
performance in social cooperative scenarios. In fact, in the case
of our bottom-up models, the worse-off teams do not seem
to benefit from a self-organizing system as their teamwork
quality notably suffers compared to the worst teams from
algorithmic-mediated team formation solutions. Especially, the
hybrid approach HiveHybrid is the most effective at bridging
the gap between best and worst teamwork qualities forming
teams that are closer in the way they perform. This ability to
redistribute resources among a population to help all teams
achieve similar teamwork quality is exceptionally favorable in
settings where global objectives are of equal importance to
local interactions as it is in the case of groups of learners.
Massive OpenOnline Courses (MOOCs) are an example of large-
scale collaborative settings that would benefit from fair semi-
centralized clustering to allow all learners to partake in useful
and educational teamwork. It could also help with reducing
drop-outs as learners would be motivated to partake in teams
from which they can learn and share knowledge. Through hybrid
approaches to team formation, online learners would be given
the final decision over algorithmic prompts carrying decisive
advantages over fully top-down implementations that typically
disregard individual preferences.

Control of social capital and resource redistribution is not
the only advantage of hybrid systems. Connecting workers’
decisions—which are by definition local and discrete—with
global utility and centralized coordination could help with
situations where workers can no longer process information
by themselves. Often with online crowdsourcing innovation
projects, several hundred individuals take part in events and
seek collaborators. As much as the team formation system relies
on their ability to self-organize to produce optimal teamwork
outcomes, there is always the looming risk that workers cannot
assess more than a limited amount of possible collaborators at a
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time. Thismeans that workers are likely tomiss out on potentially
better matches as they simply cannot have a comprehensive
view of all options unless they scout the entire pool of workers.
However, with prolonged exploration workers do not have the
time to settle into teams and may discard ideal collaborators to
continue their search. Due to this extraneous cognitive overload
and excessive search space, a system that can fittingly combine
algorithmic mediation and worker agency—such as HiveHybrid—
could be amore suitable alternative to fully self-organized and fully
top-down systems even though they may be less effective at forming
highly competitive teams.

5.3. Generalizing to Other Collaborative
Settings
In this study, we simulated an open collaboration scenario where
crowds gather to collaborate on a complex problem. We chose
a hackathon as an example of a design-sprint-like event for
which crowds compete for prizes while collaborating in teams.
As in reality, our simulations represent workers forming project
teams either through top-down mediation (upon organizers’
decision) or bottom-up negotiation (workers choose their
teammates and self-organize). Although traditionally confined
to software development, hackathons have developed to serve
other scopes, for example, by hosting charity events, public
memorials, professional networking, and more, and are therefore
much broader than their cryptography development ancestor
(Briscoe, 2014). For this reason, hackathons can be used as
general-purpose initiatives to attract crowd participation and
gather expertise and innovation. Online hackathons have also
become attractive mediums for the involvement of citizen crowds
in decision-making processes (Temiz, 2021). For example,
“Hack The Crisis” is, to date, the most popular crowdsourced
global movement connecting crowds to solve complex societal
challenges such as pandemics prevention and emergency
response (Hack the Crisis Team, 2021). The chosen setting could
be applied to large-scale crowd empowerment through open
challenges, open education, and social impact.

Regarding the components of the simulation, we modeled
only an abstract set of worker skills especially since some
hackathons’ organizers filter attendance based on functional
background and expertise with the intent to harvest specialized
knowledge from the crowd. However, the worker model could
be easily expanded to other tasks and settings. For example,
in a scenario where students form teams, their attributes
would represent interests, preferences, and abilities instead
of the functional background, personality, and skill as we
modeled in this study. Furthermore, some hackathons are
characterized by rounds of sprints which we have devoted
to individual/algorithmic decision-making and search space.
Moreover, in real-life hackathons, it is not unusual that these
rounds provide organizers regular opportunities to monitor and
evaluate teamwork as the event unfolds. In our study, we use
the same concept to evaluate teamwork quality and to allow
workers (and algorithms) to rotate teams. From MOOCs to
citizen science, these elements of the system can be adjusted
to correspond with periods of recollection and assessment
that are often present in large-scale crowdsourcing activities.

Finally, hackathons usually end up with a selection of the
best projects and the best teams, which, in this case, is the
main metric for assessing the adequacy of the team formation
system models. Generalizing this setting to other scenarios,
we suggest that the evaluation could be adjusted to whichever
factor the event organizer wishes to assess (e.g., communication,
coordination, the balance of contribution and effort, etc.). For
example, teams of learners will be likely evaluated based on
mutual support, cohesion, and effort, thus differing from software
development teams focused on product quality, team efficiency,
and profitability.

6. LIMITATIONS

In this section, we list and discuss four main system design
choices that could be improved or modified in future studies
as follows.

Modeling worker attributes and recruitment through AMT
may not be comparable to other platforms. In this paper, we
have used AMT as the platform of reference for modeling worker
demographic attributes (Difallah et al., 2015; Lykourentzou et al.,
2016a) and recruitment. This choice allowed us to ascertain
a degree of reliability and applicability since the demographic
distribution adhered to existing statistical records. However, as
crowdsourcing platforms evolve and differentiate, many more
platforms offer like-minded individuals ways to collaborate and
participate in disparate projects. The most prevalent crowd
population on platforms facilitating creative tasks, such as
OpenIDEO, Upwork, Fiverr, or even creative hubs, may have
different demographic attributes than their AMT counterpart,
which is mainly used to serve micro-tasks. We strongly
encourage future studies to consider additional platforms of
reference to model workers’ profiles (such as educational level,
personality, and age) and recruitment, which could be more
relevant to creative hackathons and complex problem-solving.

6.1. Homophily Threshold Modeled on the
Entire Population
Unlike worker risk appetite, homophily was modeled on the
whole population as a shared threshold rather than on an
individual-to-individual case through a non-uniform probability
distribution. This modeling choice also means that it is not
possible to identify how individual homophily might have
affected the behavior of a worker in a pool with diverse
homophily attitudes. In future studies, modeling the personal
preferences of collaborators would help to fine-grain our
assessment of the impact of homophily in team formation. It
would also help with evaluating how different attitudes toward
diversity combined affect the formation of more or less stable
teams and to what extent it influences teamwork quality.

6.2. Risk Appetite Goes Beyond the
Tendency to Explore Collaborators
In our model of the workers, we attributed risk appetite to
the individual tendency to explore novel collaboration. In this
context, risk appetite can be thought of as a behavioral property
encompassing one’s curiosity and extroversion. Nonetheless, risk
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appetite could also determine one’s preference for a particular
task and ways of executing it. Modeling task choices, task
execution, and effort as part of the workers’ risk appetite would
also determine their stress and energy levels and delineate a
finer-grained representation of human behavior (Chiang et al.,
2021). We, therefore, suggest extending the significance and
functionality of the risk appetite attribute in future simulations.

6.3. Sensitivity Analysis Limited to
Bottom-Up Models
After comparing the four models (C-SOT, R-SOT, Hive,
and HiveHybrid) on a set of specific parameters, we have
systematically varied the parameters of risk appetite, population
size, and homophily threshold for the comparison of the bottom-
up models. This analysis permitted us to examine in detail
the models’ response to varying population behavioral patterns,
across the three aforementioned worker attributes. For our
main scenario we have chosen a specific and fixed set of
parameters; although these modeling choices have been based
on the literature, they do limit the applicability of our results to
the specific population characteristics. Performing a systematic
sensitivity analysis for themain scenario can, in the future, permit
to examine whether the current results can be generalized to
scenarios with other demographics or whether there are any
mixed effects, for instance between the team size and the workers’
homophily threshold.

6.4. Teamwork Quality Function Limited in
Scope
Our evaluation of teamwork quality is based on the assumption
that certain attributes together matter most in determining
the probability of success of a team. We identified team skill,
interpersonal compatibility, and team size as the determining
factors. Although these factors have been shown in the
literature to critically affect teamwork performance, there may be
additional aspects of the collaboration that also play a significant
role depending on the real-world task at-hand. For example,
communication quality, the ability to think out-of-the-box as a
team may also affect the final result. Follow-up studies could
therefore examine additional quality metrics and even evaluate
different methods for calculating teamwork quality than the one
used in this study.

6.5. Worker Search Space Unhindered by
Cognitive and Temporal Constraints
Another assumption present in this study is that workers are
not constrained in their search of available teammates. This
means that if a large pool of workers is available, workers can
evaluate all possible team combinations and pick the one with
the highest utility. In real-life settings, this is not always possible
as information may be missing and time and resources may be
lacking to carry out a thorough evaluation of this kind. Future
simulations should take into account the limitations that workers
may face when assessing others, especially as the size of the

worker pool increases, and convey these in their definition of the
search function. It is possible that workers can truly only process
a few candidates at a time, and their judgment can be affected by
presentation or popularity biases.

6.6. Hive Is One of Many Kinds of
Top-Down Models
Our comparison of different team formation models uses only
one top-down approach, namely Hive. Although the Hive
algorithm is a latest state-of-the-art community-based solution,
it does not represent many other kinds of top-down approaches.
Due to this limitation, our comparison cannot be entirely
generalized to other top-down team formation systems, aside
from the acknowledgement that they do not grant worker agency
in decision-making. Testing other approaches, such as bi-partite
graphs and stable matching algorithms will give future studies
more comprehensive knowledge of the effectiveness of these
approaches in collaborative crowdsourcing scenarios and how
they compare to self-organized and hybrid solutions.

7. CONCLUSION

With the rapid growth of crowdsourcing platforms used for
collaborative innovation generation and citizen participation,
team formation among members of a crowd becomes
increasingly pertinent. This study evaluates how different
approaches to crowdsourcing team formation impact teamwork
through bottom-up, top-down, and hybrid models. Using a
simulated hackathon scenario, we gathered results from the
collaboration between strategic worker agents showing that
bottom-up models are convincingly more effective at forming
highly competitive teams but do not succeed at redistributing
equally resources within the crowd population. On the contrary,
the hybrid system which combines bottom-up worker agency
with top-down algorithmic mediation bridged this gap by
forming teams of closer teamwork quality. The purely top-down
approach performed averagely whilst still limiting worker
agency in team formation. We further observe that high-risk
appetite levels, large population sizes, and high homophily
thresholds of the involved crowd worker population positively
affect teamwork quality in bottom-up approaches. This study
furthers our assessment of the impact of self-organization in
large-scale collaborative crowd innovation and helps the design
of systems incorporating agency in algorithmic mediation in
team formation.
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