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Abstract

Semantic indexing and retrieval has become an importaetarels area, as
the available amount of information on the Web is growing enand more. In
this paper, we introduce an original approach to semantieximg and retrieval
based on Formal Concept Analysis. The concept lattice id as@a semantic index
and we propose an original algorithm for traversing thédatand answering user
queries. This framework has been used and evaluated on atagets.

1 Knowledge discovery in databases (KDD)

1.1 Introduction

Knowledge discovery in databasesn be likened to the process of searching for gold
in the rivers: the gold nuggets that are researched are kdge@lunits, and the rivers
are the databases under study. Huge volumes of data —ancufzaly documents—
are available, without any intended usage. A fundamentsiipn is to know if there
may be something interesting in these data, and to find metfurdextracting these
“interesting things”. The knowledge discovery in datalsgzecess —hereafter KDD—
consists in processing a huge volume of data in order toebktrowledge units that are
non trivial, potentially useful, significant, and reusabfeom a global point of view,
the KDD process may also be understood as a process turniagnta information
and then knowledge (see figure 1), considering the followimgations [41, 51]:

e Data = signs + syntax.
¢ Information = data + meaning.

e Knowledge = information (syntax and semantics) + abilityse information.

In addition, the knowledge units extracted by the KDD systeust be represented
in an adequate representation formalism and then they maytdgrated within the
ontology to be reused for problem-solving needs in appticatomains such as agron-
omy, biology, chemistry, medicine. ..

1.2 Symbolic Methodsin KDD

Knowledge discovery in databases (KDD) consists in pracgsslarge volume of data
in order to extract useful and reusable knowledge units fiteese data. An expert of



Data (rough data, databases)
+ Domei n under st andi ng
+ Dat a sel ection (w ndow ng)
Selected data
+ Cleaning / Transformati on of data
3 Preparation of the data set
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+ Data mi ni ng process (discovering patterns)
3 Nurreri cal and symnbol i ¢ KDD net hods
Discovered patterns
+ Post - processi ng of discovered patterns
+ Interpretation / Evaluation
Knowledge units (for know edge systens)

Figure 1. The KDD loop: from rough data to knowledge unitseTverall objective
process of the KDD process is to select, prepare and extnagtledge units from dif-
ferent sources, and then to represent the extracted kngevlguits in adequate knowl-
edge structures.

the data domain, the analyst, is in charge of guiding theaetitn process, on the base
of his/her objectives and domain knowledge. The extragtimtess is based on data
mining methods returning information units from the dateheTanalyst selects and
interprets a subset of the units for building “models” thatynbe further interpreted
as knowledge units with a certain plausibility. The KDD pees is performed with a
KDD system based on components such as domain ontologigsiaing modules
(either symbolic or numerical), and interfaces for intéiats with the system, e.g.
editing and visualization.

The KDD process can be considered along three main stespdgiaration, data
mining, and interpretation of the extracted units. At eatpsdomain knowledge,
possibly represented within ontologies, can play a sukiatawole for improving the
KDD process [26]. Moreover, data mining methods can be eitheeric or symbolic.
In this talk, we will mainly focus on the second type and esgbcitemset search,
association rule extraction, and Formal Concept Analyasisl @xtensions) [32].

The search for frequent itemsets consists in extracting toomary tables itemsets
occurring with a support that must be greater than a givesstiold [33, 3, 47, 53].
Given a set of objects and a set of properties, an item carnelspto an attribute or a
property of an object, and an itemset (a pattern) to a seeofst The support of an
itemset corresponds to the proportion of objects owningtraset, with respect to
the whole population of objects. An itemset is frequentsfsupport is greater than
a given frequency thresholgs: a proportion at least equal te; of objects own all
items included in the itemset. The search for frequent iedsis based on monotony
constraints (base of the Apriori algorithm [1]). The seanEfrequent itemsets begins
with the search of frequent itemsets of minimal length (agkh 1). Then, the frequent
itemsets are recorded and combined together to form thed=atedtemsets of greater
length. The non-frequent itemsets are discarded and allghper-itemsets. The can-



didate itemsets are tested and the process continues imithe way, until no more
candidates can be formed.

From frequent itemsets it is possible to generate assouniatles of the formh —
B relating an itemset with an itemseB, that can be interpreted as follows: the objects
owning A also ownB with a support and a confidence [1, 34]. More precisely, an
association rulet — B has a support defined as the support of the itemseB
and a confidence defined as the quotiemtport(A U B)/support(A) (that can be
interpreted as a conditional probability). Then, a ruleaibdiif its confidence is greater
than a confidence threshald, and its support is greater than the frequency threshold
for itemsetsrs (a valid rule can only be extracted from a frequent itemset).

The numbers of extracted itemsets and rules may be very, largethus there is
a need for pruning the sets of extracted itemsets and rutesnfsuring a subsequent
interpretation of the extracted units. This is especialig twhen the interpretation has
to be done —and this is usually the case— by the analyst whatsarge of interpreting
the results of the KDD process [7].

Actually, the search for itemsets and association rulesedaegded to concept lat-
tices: they correspond to a breadth-first search in the qanattice associated with
the formal context under study.

1.3 Formal Concept Analysisand variations
1.3.1 Thebasic framework of FCA

The framework of FCA is fully detailed in [15]. FCA starts Wian formal context
(G, M, I) whereG denotes a set of objectd/ a set of attributes, or items, addC

G x M abinary relation betweefd andM . The statemen(y, m) € I is interpreted as
“the objecty has attributen”. Two operatorg-)’ define a Galois connection between
the powerset2¢, C) and(2M, C), with A C G andB C M:

A ={meM|Vge A:glm}andB’' ={g€ G |Vm € B: gim}.

ForA C G, B C M, apair(A, B), such thatd’ = B andB’' = A, is called a
formal concept. In(4, B), the setA is called the extent and the sBtthe intent of
the conceptA, B). Concepts are partially ordered by, B1) < (Ag, B2) < A; C
As (& Bz C By). With respect to this partial order, the set of all formal cepts
forms a complete lattice called the concept latticé®f M, I). As already mentioned
above, natural links exist between between concept lattitBmsets, and association
rules [3, 53, 46].

When one consider non binary contexts, e.g. numerical eniat data, conceptual
scaling is often used for binarizing data and for obtainitgnary formal context [15].
Then, a numerical dataset is described by a many-value@éxorG, M, W, I) is a
many-valued context whei& is a set of objects)/ a set of numerical attributeB; a
set of values (e.g. numbers), aha@ ternary relation defined on the Cartesian product
G x M x W. The fact(g, m,w) € I or simplym(g) = w means that the objegt
takes the value for the attributen.

Then, classical algorithms can be applied for designingeptiattices from scaled
contexts [22]. However, adapted algorithms for designingpacept lattice may be
directly applied on more complex data such as numbersvaiteror graphs [23, 21,
18, 17].



1.3.2 Pattern Structures

Instead of applying discretization leading to space an@ ttmmputational hardness,
one may directly work on original data. A pattern structweéefined as a generaliza-
tion of a formal context describing complex data [14, 21].

In classical FCA, object descriptions are sets of attrigutehich are partially or-
dered by set inclusion, w.r.t. set intersection: Bt) C M two attributes sets, then
PC Q<& PNnQ =P, and(M, C), also written(M, N), is a partially ordered set of
object descriptions. Set intersectiorbehaves as a meet operator and is idempotent,
commutative, and associative. A Galois connection can bigedefined between the
powerset of object®“, C) and a meet-semi-lattice of descriptions denotedbyr1)
(standing for(M, N)). This idea is used to define pattern structures in the fraosriew
of FCA as follows.

Formally, letG be a set of objects, I€tD, 1) be a meet-semi-lattice of potential
object descriptions and lét: G — D be a mapping associating each object with its
description. ThertG, (D, M), d) is a pattern structure. ElementsBfare patterns and
are ordered by a subsumption relationVe,d € D, c C d <= cMd = c. A pattern
structure(G, (D, M), §) gives rise to two derivation operatarg™:

AP = Mgead(g), for ACG and d- = {g € GldCT d(g)}, forde (D,N).

These operators form a Galois connection betw@én C) and (D, ). Pattern
concepts of G, (D, M), d) are pairs of the fornjA4,d), A C G, d € (D,M), such that
AP = dandA = d7. For a pattern concegt, d), d is a pattern intent and is the
common description of all objects i, the pattern extent. When partially ordered by
(A1,d1) < (A2,d2) & A1 C Ay (& do C dy), the set of all concepts forms a
complete lattice called pattern concept lattice. More irtguatly, the operatof.)="
is a closure operator and pattern intents are closed pattestisting FCA algorithms
(detailed in [22]) can be used with slight modifications tonpute pattern structures,
in order to extract and classify concepts. Details can bedon [14, 18, 21].

Below, we analyze object descriptions as interval in nuoatidata. Pattern struc-
tures allows to directly extract concepts from data whogeathescriptions are par-
tially ordered. Considering a numerical dataset with oigjée G and attributes in
M, a meet operatan on interval patterns can be defined as follows. Given two in-
terval patterng = ([a;, bil)ic(1,..., | m(3, andd = ([ei, fil)icqa,..., vy, thenieMd =
([minimum(as, e;), maximum(bs, fi)])icq1,..., | m|y Meaning that a convexification of
intervals on each vector dimension is operated. The meeatmpenduces the follow-
ing subsumption relatiof on interval patternsi[a;, b;]) T ([c;,d;]) < [a:,bi] 2
[ci,di], Vi € {1,...,|M|} where larger intervals are subsumed by smaller intervals.

A numerical dataset with objects and attributes\/ can be represented by an
interval pattern structure. Le&F be a set of objects,D, M) a meet-semi-lattice of
interval patterns|(//|-dimensional interval vectors), arida mapping associating to
any objecty € G an interval patterd(g) € (D,M). The triple(G, (D,M),0) is an
interval pattern structure (see examples and details inl[2}}).

Pattern structures are very useful for building concepicks where the extents
of concepts are composed of “similar objects” with respeca tsimilarity measure
associated to the subsumption relatiom (D, M) [17].



1.3.3 Relational Concept Analysis

Relational datasets are composed of a binary tafalesects x attributes) and
inter-object relations

(objects x objects). Formally, these binary tables introduce a set of objggts
described by a set of attributéls, and, as well, a set of relatiorg C G; x G;. Re-
lational datasets arise in a wide range of situations, eamédtic Web applications
[43], relational learning and data mining [12], refactgriof UML class models and
model-driven development [44].

Relational Concept Analysis (RCA) extends FCA to the prsicesof relational
datasets in a way allowing inter-objects links to be maliegd and incorporated into
formal conceptintents. Links are thus scaled to becomé&oak attributes connecting
first objects to concepts and then concepts to conceptsaaedttictions do in Descrip-
tion Logics (DL) [2]. The new attributes are complex propesteflecting the relational
aspects of a formal concept. They nevertheless abide tathe slassical concept for-
mation mechanisms from FCA which means that the relatiomatept intents can be
produced by standard FCA methods. Due to the strong analketyyeln role restric-
tions and relational attributes in RCA, formal concepts lsameadily translated into a
DL-based formalism [40], e.g. for ontology engineeringgmses as in [5, 4, 39].

RCA was introduced and detailed in [40]. The data strucwidescribed by a rela-
tional context family, composed of a set of contefts } and a set of binary relations
{rx}. Arelationr, C G; x G, connects two object sets, a domain(dom(ry) = G;)
and a rang&, (ran(rx) = G¢). RCA is based on a “relational scaling” mechanism
that transforms a relatiar, into a set of relational attributes that are added to the con-
text describing the object sabm(ry). To that end, relational scaling adapts the DL
semantics of role restrictions.

For each relatiorr, C 0; x 0y, there is an initial lattice for each object set, i.e.
L; for 0; and L, for 0,. For a relationr, C 05 x g, a relational attribute, is asso-
ciated to an object € 0; wheneverry (o) satisfies a given constraint, wherg(o)
denotes the set of objects @ in relation witho throughr,. The relational attribute
is denoted byvr,.C (universal scaling) whemy (o) C extent(C) with ry(o) possi-
bly empty. The relational attribute is denoted By,.C (existential scaling) when
k(o) Nextent(c) # (. Other relational scaling operators exist in RCA and follow
the classical role restriction semantics in DL.

Actually, RCA is a powerful mechanism for managing relasiagm the framework
of FCA. In CBR, it could be used for example for associatingnetnts of problem
statements with elements of problem solutions, an as$ocidtat was not possible in
[11].

1.4 Elementsfor Discussion

Usually, considering knowledge systems, and CBR systemagefisknowledge units
may have two major different origins: explicit knowledgadecases) can be given by
domain experts and implicit knowledge can be extracted fdatabases of different
kinds, e.g. domain data or textual documents. Moreover, B siistem, as any other
knowledge system, improves its performance when it is guidedomain knowledge
[26]. Hereafter, some requirements for KDD systems, adbjoten [7, 51], are listed
for discussion:

e A KDD system is a knowledge system: it should present to tlee thee under-
lying domain in an appropriate fashion and rely on domainedge (e.g. an



ontology).

e Extending the system knowledge: domain representationldhme extensible
by addition of new concepts or classes resulting from miminquerying pro-
cesses. Concepts and their instances must be reusableriesgquene question
of extracting cases from data, which have to be made preeisains open [10].

e Alternative classification and mining tools: it should bespible to define alter-
native classifications of data, e.g. alternative concepités. A set of different
classification and mining tools should be available, pdggibmbining numeri-
cal and symbolic methods.

e Supportto analysts: analysts should be supported by atkegsaalization tools
and in the interpretation of extracted units as well, inipatar by domain knowl-
edge.

e Monitoring and documenting the system evolution: tools atfng versions can
be used for monitoring changes in classes or concepts aver tThe system
should document the different steps of the knowledge desgoprocess.

e KDD s a flexible process and its results should reflect thegbhature of knowl-
edge, i.e. extracting procedural or declarative knowledlgjts, and, as well,
meta-knowledge units.

e KDD provides knowledge units for extending ontologies,,aediprocally, knowl-
edge systems and CBR systems can be used to guide and imdpave K

Finally, the relations between knowledge representateasoning, and knowledge
discovery with FCA, are explained as follows in [51]. Formahcepts and concept
lattices provide a mathematization of real-world conceptdrchies. This yields a
mathematical support to human reasoning, especially ubmgraphical representa-
tion of concept lattices. Then, conceptual knowledge disog considered as pattern
discovery plus knowledge creation, can be guided by theydexdficoncept lattices and
a subsequent representation of the formal concepts witkimoaledge representation
formalism such as description logics. The process can beated until a satisfactory
knowledge base is obtained.

2 Semantic indexing

Semantic indexing and retrieval is a growing research &8a [Semantic indexing
refers to organizing a set of available information itemside an index according to
the semantic relations and concepts that they share, wihaustic retrieval refers
to searching within this index to identify the items, the o of which matches a
given user query [19]. In a certain sense, semantic retrisd@ased on flexible and
partial matching techniques contrasting exact matchingrtgjues, traditionally used
in standard information retrieval.

The organization and retrieval of information based ordtstextcan, if effectively
carried out, significantly improve the automated undeditamof the meaning of the
information, as well as to provide users with richer and rmeaningful search results.
For these reasons, context-based methods of classificatidnretrieval are applied
on multiple domains and types of information, ranging fraxttbased documents to
multimedia content, such as image or video.



One of these domains, interesting for its originality and tfee potential added
value that it can create, is the domain of song indexing atrteval. In particular,
current song indexing and retrieval systems organize sbagsd on low or mid-level
descriptors [49]. Examples of low-level descriptors imtga song’s bit-rate, length or
pitch and examples of mid-level descriptors include a sotidg, artist, genre, year and
so on. Using these elements, songs are categorized araVeetrieither based on the
user’s past known preferences (content-based recomniendi@8], or on the user’s
interactions with other users (collaborative filteringp]4

However, songs contain more and richer information thaotieedescribed through
the aforementioned descriptor elements. Indeed, sondsspecially song lyrics, in-
clude information referring to a specific context, event lacp. In addition, songs,
being art pieces, may be linked to a broader context, suchh&saical event, a cer-
tain period of time or a cultural idiosyncrasy. Based on kimewledge, a user may be
interested in generating compilations of songs based dnleigel descriptions, for in-
stance "Songs about the Vietnam War”, "Protest Songs”, {8about peace” etc. As
an indication of the growing interest that content-basedy$odexing receives by users,
Wikipedia has so far indexed over 4000 songs under the aatégongs by Theme”,
which in turn includes a hierarchy of over 250 sub-topicsatad by Wikipedia con-
tributors?.

Despite user interest, only a few research works focus ojestsiyelated to context-
based song indexing and retrieval. Among the most repratestthe work in [48]
tries to extract meaningful annotations about songs, usrgmining of expert re-
views, targeted user-feedback or social game-based mddedsvork in [27] performs
automated lyrics analysis, using probabilistic latent aefic analysis, to determine
artist similarity based on the songs’ semantics. To the dfethte authors’ knowledge,
no work so far explores the problem of semantic contextdbasag indexing and re-
trieval. An opportunity therefore emerges to use the camebated information of
song datasets, revealed through lyrics or through extémkledge resources (such
as Wikipedia or Wordnet), in order to provide users with mme@aningful search re-
sults that will complement the results brought by curremigstrieval systems.

Therefore, shifted to the domain of songs, the problem ofaggim information
indexing and retrieval can be considered as follows:

1. Create a semantic index for organizing songs accordirigetio content (their
lyrics).

2. Develop automated ways for searching within this inde®tdeve songs seman-
tically linked to a user query.

An example of an indicative question for this problem would BGiven a set
of high-level descriptors provided by the user, find the $etomgs whose lyrics are
semantically related to these descriptors”.

To address this problem, we propose a semantic indexing etndval of songs
based on Formal Concept Analysis (FCA [15]). In particli&A is used to construct
a concept lattice, which classifies songs w.r.t. high-ldeskriptors that they share, i.e
the semantic annotations of their lyrics. This concepidatis then used as a semantic
index for songs. In addition, a heuristic search algoritemroposed, which traverses
the lattice in a novel way, in order to match queries basedigimlevel descriptors to
contextualized sets of songs.

Ihttp://en. w ki pedi a. or g/ wi ki / Cat egory: Songs_by_t heme



Regarding standard approaches of semantic indexing anchs¢lae main contri-
butions of this work lie in the following:

e The use of FCA and a concept lattice as a semantic index.

e The development of a novel algorithm that traverses a cdtatijee to retrieve
information based on the content of concepts.

e The incorporation of semantic indexing to current songeesl needs.

An additional characteristic is addressing the problemeshantic indexing and
retrieval as a 3-step knowledge discovery process, coingtise following main steps:
data preparation, discovery and filtering of the results.

The rest of this document is organized according to the ntapssof the process.
Firstly, Section 3 proposes the state of the art for positigthe present work. Section
4 presents the data sources and the preparation of the da&esetion 5 introduces
FCA and analyzes its use for semantic indexing and queriegt, Section 6 presents
the evaluation results obtained for our approach. Fin8kgtion 7 discusses possible
extensions of our work and research.

3 Reated Work

Song information retrieval is a relatively young field, winistarted to draw attention
in the late 1990s, both in terms of commercial systems andieawiz research [8].

On the commercial side, many well-known song retrievalesyst may be found,
including Internet applications (Last.finGrooveshark Songstef?), desktop applica-
tions (iTunes, Zune, Amarok, Songbird, Winamp) or even el applications in
mobile devices (ipod, android, zone).

Academic approaches have also elaborated on different@spethe song index-
ing and retrieval domain. First, a significant number of vedidcus on song annotation,
i.e. describing the song in terms of symbolic, audio or tekinetadata (indicatively
[13, 20]). Symbolic and audio annotation belong to the deddow-level descriptors
and characterize the song in terms of musical notes and $eathdes such as bit-rate,
length, pitch or melody. Text-based annotations belondnéocategory of mid-level
descriptors and use annotation elements such as artisg ged title. The annota-
tion task is performed through hand-labeled expert feedlzatomated text-mining of
music reviews or, more recently, through social song aniootgames [48].

Song annotations are then used by music search engines fwnlaen of retrieval
tasks. Low-level descriptors are used for example to erfafgerprinting, i.e. search-
ing within song datasets to retrieve exact or similar matdbea particular recording
[50] or to facilitate the resolution of copyright or plagsem issues [49]. Mid-level
descriptors are used mainly by recommender systems to sugee& songs to users,
either by directly matching the user query to the stored tatimms (content-based
recommendation [48]), or by combining the latter with anidial feedback of a user
community (collaborative filtering) [30].

However, the focus on low or mid-level descriptors to retisong is not always
adequate. Indeed, as a recent survey on user needs in thd@oagn reveals that the

’http://ww. | astfmfr/
Shtt p: // grooveshark. com
4htt p: / / www. songst err. conl



majority of users expressed a strong interest in contestuay metadata, as these are
reflected through lyrics or additional background knowlkefizp]. The works focusing
on context-based information are a few and mainly focus odeting the semantics
of lyrics to discover patterns of emotions [35, 42] or clustef mid-level descriptors,
such as artist similarity [27] or genre [24, 16]

Finally, regarding the present work, the method of FCA isduseinformation-
retrieval related tasks. Specifically, the work of [36] uB€3A to improve the repre-
sentation of a document collection by merging it with infation from a thesaurus
and thus creating a multi-faceted extended context. Th& wi]9] uses a similar ap-
proach to improve the representation of web results. Spatifi in this work FCA is
used to create a faceted web browsing system that enablestasguery search en-
gines, such as Google, and then organize the results in @pbladtice. However the
above works do not use the concept lattice as a semantic mdear create the facets
that will facilitate users in browsing the retrieved result

We introduce FCA to create a semantic index of a given sorasdafand a novel
method to query this index, thus contributing to both theaarecontext-based infor-
mation retrieval on the music domain, as well as to the broadma of FCA-based
information indexing and retrieval.

4 Data sourcesand dataset preparation

The song dataset used in our experiments is based on two mates of data, namely
musiXmatch and WordNet , briefly introduced hereafter.

4.1 musiXmatch

The musiXmatch datasds a database that contains the lyrics of approximately 700K
songs, in the form of bags-of-words. The musiXmatch datasstrecently released
(April 2011) as the official lyrics collection of the Milliolrsong Dataset [6]. The
musiXmatch dataset is used as the source to provide thes lfgiceach song in our
dataset, and this choice is made on the basis that the lyfcsevides are: i) already

in the format of bag-of-words and ii) already preprocessgdgistemming, in order to
eliminate morphologically-related word duplications.

4.2 \WordNet

WordNe#f is a semantic dictionary widely used in the domain of comipanal lin-
guistics and natural language processing [29]. WordNebeaused to relate a word to
a set of synonym terms, called synsets, each of which carngispto one meaning of
the specific word. For example the word “concert” corresppandhree synsets inside
WordNet: i) “a performance of music by players or singers ingolving theatrical
staging”, ii)“contrive (a plan) by mutual agreement” anyl'settle by agreement”.
Synsets inside WordNet are also mutually related throughaséic or lexical hi-
erarchies. The most interesting, for our problem, is theas#im hierarchy, which
connects synsets in hypernym-hyponym relationships, twthernyms representing
broader and hyponyms narrower semantic terms. The hypehyponym hierarchy
of WordNet can therefore be used to retrieve the semantiardie of a pair of given

Shttp:/ /1 abrosa. ee. col unbi a. edu/ m | | i onsong/ nusi xmat ch
6http://wordnet. princeton. edu



Table 1: Synsets retrieved for the word “soldier"from Woetin

Synset Synonyms  Definition

soldier.n.01 soldier an enlisted man who serves in an army
soldier.n.02 soldier a wingless sterile ant or termite hgui
soldier.v.01  soldier serve as a soldier in the military

synsets, i.e. how “far” or “close” these synsets are in teaihhsemantic meaning.
WordNet is used, through its API, as a resource to providéeisynsets of every word
inside each song’s lyrics and ii) the semantic distanceswartite synsets of each song.
A more detailed description of the use Wordnet's API is pded in section 5.1.

For carrying out our experiments, using musiXmatch and \Wetdwve constructed
a dataset of 357 songs in total, where each song is repréedmnits title and lyrics, in
the form of bag-of-words, and each word is connected to afsstsets.

5 Semanticindexing based on FCA

Current song retrieval systems work by exact matching gdriof the user query to
song attributes, such as title, genre or artist [49]. Howei¥e¢he user is interested
in searching for songs related to an idea or a concept, theeadyoproach may not
be sufficient, since it cannot find a direct connection betwre content of a song
(what a song is about) and its attributes. For instance,se tae user is interested in
songs abouwiVar, current song retrieval systems would retrieve only sohgsdontain
this word in their title, a fact which would, in turn, lead tacomplete or even inexact
results. Trying to match the keywoiYar directly to the lyrics would also not be
adequate, since this word can be used in several contexisiden for instance the
love song by Blue Nile, titled “War is Love”). Neverthelesbe lyrics of a song are
still a valuable source of information regarding its comtaile to complement current
attributes.

The problem is then defined as finding songs the lyrics of whielelatedto a set
of user-provided keywords, through a sufficient “closersdsseaning”. Our goal is to
construct a semantic index, from a given set of songs and lgris and a closeness
relation, which will support successfully context-basedgretrieval.

In the following, a song; is defined as a palft;, L; } wheret; denotes the title and
L, the lyrics of the song in the form of a bag-of-words, as predidy musiXmatch.

5.1 Task 1: Lyrics Annotation

Given a song; = {t;, L;}, the first task is obtaining from WordNet the set of synsets
that corresponds to its lyrids;. For this purpose we query the API of WordNesing
each wordw € L; (which may comprise multiple words). Each retrieved syset
a definition and a set of synonyms. Wardis part of the synonyms. As an example,
Table 1 illustrates the synsets retrieved from WordNetlerword “Soldier”.

From the above example it can be understood that not evesgsygtrieved through
WordNet is valuable in the context of a song. For instancéhéncontext of a war, a
reference to a “soldier” would be clearly related to the d&éin of anenlisted man

"http://nltk. googl ecode. com svn/trunk/doc/ howt o/ wor dnet . ht m
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who serves in an armgnd not to the definition of aoldier ant The third definition
can also be disregarded since it is associated with a verb.

Therefore, to annotate each song, we firstly need to obtaitirdNet synsets that
correspond to its lyrics and secondly to filter the retriesypuksets, in order to keep only
those that correspond to the actual context of the song., Blaigch song was associated
with a set of WordNet synsets in the following way: For a pgaar songs; and its
lyrics L,, we first used the WordNet API to retrieve the lis{ L;) of synsets that are
associated with each word iiy.

Then, a filtering process took place as follows: a widespaadlarity metric,
namely the Wu-Palmer Similarity Measure [52] was used tosueathe semantic
similarity between every pair of synsets in thgL;) set. The Wu-Palmer similar-
ity measurewp(ssi, ss2) = [0,1],s81 € ss(L;) A sse € ss(L;) is provided by the
WordNet APl and measures semantic similarity using pattadee and the difference
of levels in the synset tree. Then for each syssetwe calculate the average distance
with every other synsets;, € ss(L;) as defined in equation 1.

;k wp(ss;, $Sk)
. J
avg-_sim(ss;) 55 (L) Q)

The synset with the lowestvg_sim is deleted fromss(L;). The filtering is re-
peated until we reach to a threshold 28f most similar elements irs(L;), which
will be considered to constitute the so-calkainantic coref the songs;, denoted as
core(s;). The threshold of 20 synsets was selected heuristicatigesi was found to
represent the semantic core of the songs, in the specifisetata a concise and non
redundant way.

The outcome of the filtering process is the @ete(s; ), which is considered as the
final set of semantic annotations of the sapgince it refers to a well-defined semantic
schema, i.e. WordNet, where each annotation contains ataefiand relations with
other annotations.

5.2 Task 2: Semantic Index Creation

One particular aspect of this work is to build a semanticxakea concept lattice using
Formal Concept Analysis (FCA) following the lines of [31,38].

We define the formal context = (G, M, I), whereG is the set of objects contain-
ing all the considered songs while the set of attribdteéscludes all WordNet synsets
constituting the semantic cores of the song&sin The set/ maintains the relations
between songs and synsets whefe: stands for “song has synset. in its semantic
core”. Table 2 shows an example of a formal context createh ft1 songs and 6
synsets.

The concept lattice obtained from the context presente@del? is illustrated on
Figure 2. The concept lattice is presented inéduced notatiomvhere objects (songs)
and attributes (synsets) are shown only next to their olgjiibute-concept, i.e. the
most general concept for attributes which are inheritechfnigher to lower levels, and
the most specific concept for objects which in turn are shé@d lower to higher
levels.
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Table 2: Context example.
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song6 X
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songl4 X | X X
songl6| x | X | X | X | X
songl8 X | X X
song24 X X
song27| x | X X
song32 X | X X | X
song33 X | X
song39| x X | X | x| X

5.3 Task 3: Semantic Index querying

A simple query to the constructed semantic index (i.e. thecept lattice) is a pair
q = (44, B,) where A, denotes an empty extent to be filed aBd = {ss} is a
synset to be searched for. Actually, the retrieval is basetivo steps. The first one
corresponds to “exact matching” (as in [31]) and the secardesponds to “partial
matching” based on the closeness relation introduced fiere@he first step is based
on the search for the attribute-concégt,, B, ) of attributess in the concept lattice,
i.e. the most general concept wheteappears in an intent (also denoteds) in
[15]). The extent ofd;; contains the list of all songs which are directly associatik
the synsets. Thisdirect answerconstitutes only part of the answer. The second step
is related to partial matching based on the closenessaeldéfined in the “hypothesis
of closeness”.

Hypothesisof closeness. Two concept$A4,, B1) and( Az, B2) which are not com-
parable for<i are said to beloseiff there exists(As, B3) such that(As, Bs) <g
(A1, By) and(As, Bs) <k (As, Bs). Intuitively, this means thdtd;, B;) and(As, Bs)
do not subsume each other and thas, Bs) can be either the lower bound or be sub-
sumed by the lower bour(;, B1)M(Az, Bs) (Where(A;, B1)M(As, B2) denotes the
lower bound of(A;, By) and(Az, Bs). Actually, (A3, B3) represents songs related to
both(A;, By) and(As, B2): two songs are related if their semantic cores share some
elements, which is the case here AsC A; N A; andBs C By U B,. For example,
in figure 2, concept 3 is close to 2 because of concept 8, coideap close to concept
12 because of concept 16 and so on.

For a given attribute conceptl,,, Bss), the querying algorithm extracts allose
conceptg A;, B;) of the synsets, and then moves down the concept lattice, repeating
the same extraction level by level. It should be noticed thatoriginal synset query
ss is not present in any of the intents of thkvse concept®;, this is why we can
speak of “partial matching”. Every close concégt;, B;) is ranked according to the
intersection that its extent has with the extent of the aagattribute concept using the
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Figure 2: The semantic index as a concept lattice obtaindtdR@A. Each concept is
labelled with a unique identifier.

following metric:

rank(A;, Ass) = %

2)

This metric is two-fold since it allows the detection of cepts(A;, B;) which
are far from the original concept and share no common obijeitts the extent of
(Ass, Bss) (Ai N Ags = 0 and rank = 0) and those that are too abstract and describe
too many objects|@;| > |A,,| and rank~ 0).

Hereafter, we give details on the steps of the algorithmugihdhe use of an exam-
ple, graphically illustrated in Figure 2. Let us considersamquery for songs related
to the synset “bolshevik.n.01” (concept 3 on Figure 2).

1. Find the attribute-concept,, Bss) for the synse{ss}: concept 3.

2. Find the sub-hierarchy dfA, Bss) in the concept lattice, i.e. all concepts
subsumed by A, B,s) and order them by levels: concepts 8, 11, 10, 15, 13,
16, 17 (solid arrows in Figure 2).

3. For each concept in this sub-hierarchy, find the supeceymts which are close
concepts of A5, Bss) (and then for the descendants(ef;,, Bss)): concept 2
is close to 3 because of 8, 4 is close to 3 because of 11, 6 is td® because
of 10, etc. The final list is ordered by levels: concepts 2,,4,9, 7, 12, 14
(dashed arrows in Figure 2).

4. Calculate the rank value of each close concept (accotdig. 2) and sort these
close concepts in descending order: concepts 6, 12, 9, 47218.

5. Theresultis composed of the songs in the extent of thibatitrconceptA,s, Bss)
and the extents of the close concepts.

The final result, in terms of the retrieved close conceptsir tankings and the
songs in their extents, is shown in Table 3.
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Figure 3: Querying the FCA lattice. The values of the rankrindor each close con-
cept are presented in a percentage form. In this exampleepo3 is the attribute
concept, solid arrows show the subhierarchy and dashedssioow the close con-

cepts of concept 3.

Table 3: The list of retrieved songs in the final order.

Close Concept rank Songs

3 (attribute-concept) Song16, Song27, Song39

6 66%  Song33

12 50% Song32

9 50%

4 50%

2 29% Songl, Songl0, Songl4, Song18
5 25% Song24

7 17%

14 0%

It is important to note that the basic target of the algorigmmposed above is se-
mantic retrieval. The order in which the algorithm presehts retrieved groups of
songs to the user is a “reccomendation decision”, whichccdepend on user prefer-
ences and imply the use of a threshold to filter the final listarfgs. Semantic retrieval
does not necessarily imply the use of a threshold, which iswmdpresent all the songs
retrieved.

6 Validation of the approach

As described in the previous section, the lattice is quasgdg a synsets (e.g. bol-
shevik.n.0L This synset is directly related to a set of son@s€ct_answerss), i.e.
those in the extent of the attribute concédt s, Bs) of that synset (in the case of
bolshevik.n.0lthey are the songs 16, 27 and 39). These songs will be retr@ong
with the set of songs found in the extents of these concepténdirect_answerss)
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of (Ass, Bss) (songs 1, 10, 14, 18, 24, 32 and 33).

Regarding the songs ilirect_answer,s , we are interested in examining whether
our approach can find them if we apply it on a modified formaltegrhwhere their
relations with the synsets have been eliminated. Of course, in this case, these songs
cannot be retrieved as directly related songs, but only agsstound in the extents
of close conceptsFor example, if we eliminate the relation between song ibtha
synsetbolshevik.n.0lve want to know if this song can be retrieved by querying the
new lattice using the synshblshevik.n.01

Regarding the séhdirect_answer,s, we are interested in examining how it changes
after the application of our approach on the modified fornoattext since the elimina-
tion of a(song,synsetelation will affect the structure of the concept latticeldrence
the output of the proposed retrieval algorithm. Small wéies in the content of this
set will indicate robustness.

6.1 Leave-one-out crossvalidation

To evaluate the above and subsequently the hypothesissgiidss presented in section
5.3 we used and adapted the leave-one-out cross validate®CV) methodology,
which is a special type of cross validation [37]. Our adaptetonsists of intentionally
removing a singlésong,synsetgelation from the original formal context and construct
its concept lattice. We call this modified concept latticecanario Therefore, each
scenario is identified by a pair synset{.,,) and song{..), the relation of which was
eliminated for the scenario’s construction.

For a given scenario, if song..,, can be retrieved by querying for synset.,, we
mark the scenario assaccesge.g. querying fobolshevik.n.0&and retrieving song 16
for scenario withss,., = bolshevik.n.0BAnds,; = song 16). It is worth noticing that
thetotal number of scenarid®r a single synset is determined by the number of songs
where the synset appears in (i.e. the songs in thdisett_answer(ss)), since we
only eliminate at each time only a sindEong,synsetgelation from the formal context
(e.g. for the synsdiolshevik.n.0lve construct 3 scenarios for songs 16, 27 and 39).

For a given synsets we define asuccess_rate(ss) as illustrated in equation 3,
wheretotal_scenarios(ss) refers to the total number of scenarios constructed using
synsetss and the songs idirect_answer,s andsuccess_scenarios(ss) refers to how
many of them were marked asaccess

success_scenarios(ss)

®3)

_rat =
success_rate(ss) total _scenarios(ss)

High values ouccessateindicate that a song can be retrieved for a synset query
even if the song is not related to the synset itself.

To evaluate the changes in the setlirect_answerss, we compare the full set
of retrieved songs from each scenario with the respectivefsgongs retrieved from
the original concept lattice. We calculate precision defimeEq. 4 as the propor-
tion of true positives over the retrieved list of songs in arerio. Accordingly, we
calculate recall, in Eq. 5, as the proportion of true posgiwver the retrieved list
of songs in the original concept lattice, i.e. the concetfticka without any removal.
The expressioiRet(scn, ss) denotes the total set of songs retrieved from scenario
(direct_answer,s U indirect_answerss) querying for synsets while original de-
notes the original concept lattice.
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Ret(scn, ss) N Ret(original, ss)
Ret(scn, ss)

(4)

precision(scn, ss) =

Ret(scn, ss) N Ret(original, ss)

(®)

ll =
recall(sen, ss) Ret(original, ss)

6.2 Results

For each synset we calculate the mean precision and reoadl &fl their scenarios.
From our test set of 357 songs and 1848 synsets we selectexyi®2ts and simulated
1027 scenarios (working with approximately 1000 scenaalfmvs a lower volume
of computation and more different trials). Table 4 showsuhleies of this measures
for 10 synsets. For example, it can be seen that synset amtard1 has relations
with 4 songs. Asuccessate of 1 means that all simulations were successful. Recall
of 0.9 and Precision of 0.96 mean that for an elimination {25 the relations for
a synset (1 over 4 songs), still 90% of the information wasewtd and 96% of the
information was correct. There is a positive relation betw¢he number of songs
in which the synset appears and sheccessate measure. This is not strange since
synsets appearing in a few songs will be in less conceptitattice and hence the
simulation affects them in the worst manner. For exampletie synset bar.n.03, the
elimination of one relation with a song leads to the elimimrabf 50% of its relations
(1/2), while for the synset battle.n.01 the elimination oEaelation with a song leads
to the elimination of only 5% of its relations (1/20).

Figure 4 shows the distribution sficcesgate, recall and precision (in the interval
of [0, 1] in axis y) over the number of songs where synsets appear ax{@x). The
successate maintains a growing tendency showing that better resuttsoatained
with synsets which appear in a greater number of songs. Irdangense, precision
and recall maintain their values over 70% over all the sampl€his is especially
important in values of songs per synset below 5 since losgiggle connection could
disconnect songs more significantly. In the case of the foistt§2.5 songs per synset)
losing one connection means losing 40% of the informatiaalalle, however over
70% of the original set of songs is retrieved.

It should be noted that a certain degree of bias, caused binthesion of the
directly related songs in the measures of precision/reisatb be expected. That is,
given that for each scenario we are eliminating only seng, synsetelation, the
remaining directly related songs will be present in botls setrieved when querying
the scenario and the original concept lattice. Thereftwe precision/recall measures
are meant to be used as a means of examining how the set otcosepts is affected
for each synset, and they should not be considered as a medicomparison with
other information retrieval approaches.

Finally, even if more experiments have to be completed, weccaclude that the
hypothesis of closeness valuable and can be used to exploit the use of a concept
lattice as a semantic index to retrieve objects not dirgetigted to a query.

7 Discussion, extension and conclusion

Semantic indexing and retrieval based on FCA as introdulbedeaallow us to retrieve
a set of songs w.r.t. the content of their lyrics. Howevaigck/do not always depict the
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Value

Table 4: The results of the simulations.

synset songs successte recall precision
anteroom.n.01 4 1.0 0.9 0.964
bustle.n.01 3 0.333 0.564 0.611
ambition.n.01 9 0.888 0.888 0.938
child.n.03 13 0.923 0.945 0.982
arrest.n.02 4 0.25 0.75 0.807
battle.n.01 20 0.9 0.956 0.989
champion.n.02 2 0.0 0.083 1.0

better.n.03 3 0.0 0.641 0.694
attack.n.01 2 1.0 0.730 0.791
bar.n.03 2 0.0 0.083 1.0

Measures Distribution

1.2 :
69 Accuracy

1.0f +— Recall
4 Precision

0.8f

0.6F

0.4 < 4

(9]

0.2

0.0t

—0.25 5 10 15 20 25 30

songs/synsets

Figure 4: Distribution of measures over songs per synset.
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full context of a song. As an example, in the dataset, nonke$tngs that are known
to be about the historical event of the Vietham war actuallytains a reference to the
synset “vietnamwar.n.01”. This may happen because of two main reasonglyk-gis
song may not refer directly to its full context, but to theccimstances that surround
it (a song may not refer directly to Vietnam, but to the stoiaaoldier). Secondly, a
synset important to describe the full context of a song, ascthe “Vietham” synset,
may be ignored during synset filtering, because the spegifiset was not found to
belong to the semantic core of the song. Despite not beirgtijrpresent in the lyrics,
this information is necessary to complete the full conteéb@ song and is extremely
valuable. It can help to gain a deeper understanding of thg data and thus to provide
the user with richer retrieval results with regard to theteghof songs.

There are many sources that could be used to obtain thisi@uaiinformation
about songs. A very interesting one is DBpedia, a largessefibrt to provide se-
mantics to the content of Wikipedia. DBpedia categorizegjsan contextual “topics”
(e.g. “songs about the Vietnam War”) which can be usedadsgorical knowledgeo
enrich our understanding of the meaning of a song. For takilvgntage of categorical
knowledge, it is possible to extend the proposed FCA-bapptbach withRelational
Concept Analysi§40], which allows to take into account relations betweejeots in
the framework of FCA. It becomes then possible to create aas@mindex as a “re-
lational concept lattice”, where songs are related not gmgugh their lyrics but also
through their categories. In the RCA framework, it is thergible to search for a set of
songs which are indexed under the same or related categamesegory can be more
or less general in the hierarchy of categories of DBpediaprésent, first experiments
were made with RCA. The retrieval process shows similarggerénces as with FCA
but provides alternative lists of results. These experisbave still to be completed
and analyzed.

Concluding, in this document we propose a novel contrilmtiidhe field of seman-
tic indexing and retrieval, which is based on Formal Conéeatlysis. Specifically, we
use the concept lattice as a semantic index and propose aailguathm to traverse
it in order to match user queries with semantically relevafdrmation items. The
approach was tested on a song dataset and the obtained st good capabilities.
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