490 research outputs found

    2-D Model Test Study of the Suape Breakwater, Brazil

    Get PDF

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure

    Logarithmic observables in critical percolation

    Full text link
    Although it has long been known that the proper quantum field theory description of critical percolation involves a logarithmic conformal field theory (LCFT), no direct consequence of this has been observed so far. Representing critical bond percolation as the Q = 1 limit of the Q-state Potts model, and analyzing the underlying S_Q symmetry of the Potts spins, we identify a class of simple observables whose two-point functions scale logarithmically for Q = 1. The logarithm originates from the mixing of the energy operator with a logarithmic partner that we identify as the field that creates two propagating clusters. In d=2 dimensions this agrees with general LCFT results, and in particular the universal prefactor of the logarithm can be computed exactly. We confirm its numerical value by extensive Monte-Carlo simulations.Comment: 11 pages, 2 figures. V2: as publishe

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Critical Behavior of Random Bond Potts Models

    Full text link
    The effect of quenched impurities on systems which undergo first-order phase transitions is studied within the framework of the q-state Potts model. For large q a mapping to the random field Ising model is introduced which provides a simple physical explanation of the absence of any latent heat in 2D, and suggests that in higher dimensions such systems should exhibit a tricritical point with a correlation length exponent related to the exponents of the random field model by \nu = \nu_RF / (2 - \alpha_RF - \beta_RF). In 2D we analyze the model using finite-size scaling and conformal invariance, and find a continuous transition with a magnetic exponent \beta / \nu which varies continuously with q, and a weakly varying correlation length exponent \nu \approx 1. We find strong evidence for the multiscaling of the correlation functions as expected for such random systems.Comment: 13 pages, RevTeX. 4 figures included. Submitted to Phys.Rev.Let

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions

    Get PDF
    We study the chromatic polynomial P_G(q) for m \times n square- and triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin--Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.Comment: 55 pages (LaTeX2e). Includes tex file, three sty files, and 22 Postscript figures. Also included are Mathematica files transfer4_sq.m and transfer4_tri.m. Journal versio

    Excess Mortality Rate During Adulthood Among Danish Adoptees

    Get PDF
    BACKGROUND AND OBJECTIVE: Adoption studies have been used to disentangle the influence of genes from shared familial environment on various traits and disease risks. However, both the factors leading to adoption and living as an adoptee may bias the studies with regard to the relative influence of genes and environment compared to the general population. The aim was to investigate whether the cohort of domestic adoptees used for these studies in Denmark is similar to the general population with respect to all-cause mortality and cause-specific mortality rates. METHODS: 13,111 adoptees born in Denmark in 1917, or later, and adopted in 1924 to 1947 were compared to all Danes from the same birth cohorts using standardized mortality ratios (SMR). The 12,729 adoptees alive in 1970 were similarly compared to all Danes using SMR as well as cause-specific SMR. RESULTS: The excess in all-cause mortality before age 65 years in adoptees was estimated to be 1.30 (95% CI 1.26-1.35). Significant excess mortality before age 65 years was also observed for infections, vascular deaths, cancer, alcohol-related deaths and suicide. Analyses including deaths after age 65 generally showed slightly less excess in mortality, but the excess was significant for all-cause mortality, cancer, alcohol-related deaths and suicides. CONCLUSION: Adoptees have an increased all-cause mortality compared to the general population. All major specific causes of death contributed, and the highest excess is seen for alcohol-related deaths
    corecore